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Synopsis
Various classical potential theoretic properties of the logarithmic kernel in the plane are 

extended to the logarithmic kernel -log|r-y| in Euclidean n-space Rn. The key result is 
the following inequality for the energy of any (signed) mass distribution /j on a ball BcRn 
of radius q:

du 
B

The best possible value of the constant a is determined explicitly in its dependence on the 
dimension n. In particular, the logarithmic kernel satisfies the energy principle on any ball 
of radius q < an.
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1. Introduction

In view of its role in the theory of analytic or harmonic functions, the 
logarithmic potential in the plane has been investigated thoroughly. Re

stricting the attention to the more recent literature on this subject and to 
the potential theoretic aspects thereof, we mention the works of (). Frost
man [5], [6], M. Riesz [12], Ch. de la Vallée-Poussin [14], H. Cartan [1], 
and G. Croquet [3]. On the other hand, very little research seems to have 
been devoted to the logarithmic potential in Euclidean space Rn of dimension 
n>2. The principle results on this topic are those of M. Riesz [12, § 4] and 
0. Frostman [6, § 1] concerning the logarithmic potential and energy of 
distributions of algebraic total mass zero, and further the calculation of 
the Fourier-Schwartz transform of the logarithmic kernel, cf. L. Schwartz 
[13, ch. VII, §7] or J. Deny [4, note 3, p. 160 f. ].

In the present paper we continue the study of the logarithmic kernel 
in Rn for arbitrary dimension n; that is, the kernel

— log I x —y I (.re7?w, yeRn),

interpreted as +oo for x = ij. We shall use the terminology1 and some of 
the results of a previous memoir [7]. Most of the results of the present paper 
are applied in a recent article [8]. Of independent interest is the main re
sult asserting that the logarithmic kernel is strictly (positive) definite (that 
is, it satisfies the energy principle) when considered on a ball A C Rn of suf
ficiently small radius a (cf. de la Vallée-Poussin [14, § 47] for the case 
n = 2). The least upper bound an of such radii is determined explicitly 
(§ 4, formula (5)). The proof is based on an explicit computation of the 
equilibrium distribution (in the sense of Deny [4, § 5]) on the unit ball in 
Rn. Combining this result with the known fact that the logarithmic kernel

1 Observe, however, that the notations Zc(x, //) and v) for potential and mutual energy 
in [7] will be replaced by If (x) and (^u, v), respectively, in the present paper (in which 
k(x, y) =-log | x-y | ). 

1*



4 Nr. 1

is regular (that is, it satisfies the continuity principle), it follows, in essence 
from a theorem of M. Ohtsuka [10], that the logarithmic kernel is perfect 
in the sense of [7, § 3.3] when considered on a hall of radius fl <aM. This 
is Theorem 4.1 of the present paper. Using [7], one derives various corol
laries from this theorem, in particular the existence of an interior or exterior 
capacitary distribution associated with any given hounded set, and further 
the capacitabilily of all bounded analytic subsets of /?”. This last result, 
which depends strongly on Choquet’s theory of capacitability [2], was 
known previously for n = 2 (cf. Croquet [3], whose proof is based on 
special properties of the logarithmic potential in the plane). Further results 
involving the logarithmic potential or the logarithmic capacity arc ob
tained in [8].

Since the logarithmic kernel is of variable sign, we shall consider the 
logarithmic potential and energy only of distributions of compact support. 
This limitation will not always be repeated. We shall mainly deal with 
distributions which are measures (not necessarily positive), but general 
distributions in the sense of Schwartz [13] will enter in the proof of the 
key result (Lemma 4.1).

2. Basic notions connected with the logarithmic kernel

The logarithmic potential of a measure p on Rn (of compact support) 
is defined by

U*  (x) - - j log I x - y I d/> (y) = U'* +(x) -

at any point x for which the third member is defined (i. e., not of the form 
(+oo) - ( + oo)). In particular, U/Z(.r) is always defined and + -oo if ^>0. 

f'he logarithmic mutual energy fp, r) of two measures p and v (both 
of compact support) is defined by

<//, r> = -Hlog| æ-y | d/z(.r)t/v(y)

= < p+, v+ > + < P~, p+, !’->-< P~, v+ > ,

provided the third member is meaningful. In particular, (p,v) is always 
defined and 4= — oo if p^ (), For p = r we obtain the logarithmic energy 
f p, pf of a measure p. An application of Fubini’s theorem leads to the 
formula of reciprocity
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< /z, v) = Ç U/l (.r) dv = Uv (æ) dft,

valid whenever <[/z, is delined (cf. [7, § 2.1] for details).
In several respects the logarithmic kernel may he viewed as a limit case 

of the kernels of order <x, |.r —y|a_w, as oc->n. This appears, e.g., from the 
identity

log|x| = {(d/da)|rr|a_w}a = w. (1)

As observed by M. Riesz [12, § 4], the analogy is almost perfect when the 
measure /z in question has algebraic total mass 0, [jd/z = 0. Note, in par
ticular, the following formula due to M. Riesz (cf. also Frostman [5, § 33] 
and [6, § 1 ]) :

if U(-0 (2)
wn * v

under the additional assumption that exists and is finite.1 Here

«>. = 23l«yr(n/2)

denotes the surface of the unit sphere in Rn.
The interior logarithmic capacity y*(E)  of an arbitrary bounded set 

E c Rn is defined by

-logy*  (E) = zn(E); i. e„ y*(E)  = exp(-zzz(E)). (3)
Here

zzz(E) = inf </z,/z> (4)

as /z ranges over the class of all positive measures of compact support 
contained in E and of total mass ^dy = l . Cf. [7, § 2.3].

If E is compact, this infimum (4) is an actual minimum (cf. [7, Theo
rem 2.3]), attained by precisely one competing measure À called the capacitary 
distribution of unit mass on E. (The uniqueness follows from (2) as explained 
in Remark 2 to Theorem 2.4 in [7], because the difference p — v between 
any two competing measures is of zero total mass. Moreover, U%/2 = 0 al
most everywhere implies /z = 0 according to the uniqueness theorem of 
M. Riesz for the potentials of order a, cf. [12, § 10]). The logarithmic po
tential of this capacitary distribution Â has the following properties (cf. 
[7, Theorem 2.4]):

1 By we denote the potential of order a of w, that is, the potential of y with respect 
to the kernel | x - y |a “ n of order a. in Rn, 0 < a < n. If /z has a density f, that is, d /i = / (.r) dx, we 
may write id in place of U^.
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(a) U > tv (/i) nearly everywhere1 in E,
(b) 77^<tv(E') everywhere in the support of A.

1 The expression “nearly everywhere in E” means “everywhere in E except possibly in 
some set NcE for which y* (IV) = 0”. Replacing y* by y*, we arrive at an analogous concept 
called “quasi-everywhere”.

For n <_2, the logarithmic kernel fulfills Frostman’s maximum principle, 
and hence (a) and (b) may be replaced by: nearly everywhere
in E, and U^'^iv(E') everywhere in Rn, respectively. For n>3we have the 
following substitute for this latter inequality:

< tu(E) + log 2 everywhere in Rn (5)

(cf. [8, §2, formula (8)]). Likewise for arbitrary dimension n, the inequality 
L>iv(E) holds everywhere in the interior of E. This may be proved in 
the manner devised by Frostman [5, p. 37] for the potentials of order a.

It is well known (cf. e.g., [7, §2.3]) that, for any bounded set Ed Rn,

y:f: (E) = sup y*  (7<) (Zv compact, KcE). (6)
K

The exterior logarithmic capacity y*(E)  of an arbitrary bounded set E 
is defined by

y*(JE)  = inf y*(G)  (G open, G z> E). (7)
G

A bounded set E is called capacitable (with respect to the logarithmic kernel) 
if y*(E)  = y,..ÇE}. If E is capacitable, we may write simply y(E) for the 
logarithmic capacity y*(E)  = yS;(/f) of E. This is the case, in particular, 
if E is open or compact (cf. e. g., [7, p. 153 f.]).

3. A substitute for M. Riesz’ composition formula and its applications

The following lemma coincides in essence with a formula stated in 
Frostman [5, p. 61]. It serves as a substitute for the important composition 
formula of M. Riesz for the kernels of order a in Rw:

•’ttw

valid for oc. + ß<n. The formula to be discussed here corresponds to the 
limit case a + ß = n.
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Lemma 3.1. Let A and B denote two concentric closed balls in R of
radii q (fixed) and R>2y, respectively. 
ysA defined by

— [\x — z\a~n\z — y\~<xdz
a)n «1 Q

The function y(x, y; R) of xs A and

losi^ï+’,(-r’y;Â)
is continuous on Ax A and approaches a certain constant c uniformly in 
A x A as R + oo.

Proof. We may of course suppose that the common centre of A and B 
is the origin 0, and so B = (zsRn: |z | < R}. We begin by studying the case 
y = 0. Introducing polar coordinates, whereby dz = | z I”-1 d | z | dw, we 
obtain for reasons of homogeneity, writing t = |æ|/| z |,

“»»'b jr/R

where r = |.r|, and where ua(/) denotes the potential of order a of the uni
form distribution of unit mass on the unit sphere in Rn, evaluated at a 
point of distance t from the origin. Clearly, ua(t) is differentiable for t>] 
and for 0<f<l, and integrable over a neighbourhood of t = 1. Moreover,

«a (°) = 1 > ua(°) = lza(0 = ”)

as t-> + oo. Hence the function vx defined by

for I > 1 

for ()</<!

is bounded near 0 and integrable over (0, +oo). We now obtain

-fx-:|“-”|zr“dz-log- + lhh,
J b r \R)

where V(/) = \ pa(s)ds is continuous and approaches the limit

as /->0. —In the general case, let and R>2q. We compare
the integral of f (z) = |rr —z|a_w |z-y|_a over B = |z| with the
integral of /’(") over the ball B' = {zsRn : | z - y | </?} of centre y. Since the 
poles x and y belong to both balls (because |.r-y| the two inte
grals diller by a continuous function on A x A, viz.
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F(x, y,R)= — i f(z) dz - ~ ( /‘(z) dz.

As the integrand fis ()(R~n), and the volumes of the sets B - B' and B'—B 
are O(Rn~1), we infer that F(x, y; R)->Q for F-*oo,  uniformly for xeA, 
ye A. Summing up, we obtain the representation

1 ( I x - 7 I“- “ I ; - y r ’- log j—. + V (h^-1 ) + F(.t, !/;/<).
\x-y\ \ R ]

from which the assertions of the lemma follow because

y(.r, y ; R) = + F(æ, y; R).

It follows, in particular, from Lemma 3.1 that the logarithmic kernel
— log I x - y I and the kernel

ab(x> y) = -^-(|x-z|a_w|z-z/|_adz
J b

(considered on A) differ by the continuous function

log R + y(x, y; R)

of (,r, y) eA x A. We denote the supremum of the absolute value of this 
latter function over the compact set Ax A by M = M(R, y). It depends on 
R, o, a, and n. Taking, e. g., R = we obtain a constant 3/(3 g, <?) which 
we shall denote simply by J/(p). Thus

ab (æ, y) - M(e) < log i æ 1 y j ab (æ> y) + M(e) (1 )

for xeA, ye A. In particular, the class (S of measures /z, supported by A, 
whose energy is defined and finite, is the same for the two kernels - log | x — y | 
and AB(x, y). Since AB is a definite kernel on A (cf. [7], § 3.5), we con
clude that (S is a vector-space and that the class G+ of positive measures in G 
is a convex cone. Moreover, the logarithmic energy 

1
æ - y I

(.r) d/z (y)

is +-oo. Il is, in fact, — M(q) | d/i |}2. This result will be improved 
considerably in § 4. Observe also that the logarithmic mutual energy </z, 
is defined and finite if /z, v e cf. [7, § 3.1].
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The following two lemmas will not be used in the sequel. They are 
included on account of their role in [8, § 7]. The notations are those used 
in the preceding lemma (say, with R = 3p). The characteristic function 
associated with a set E is denoted by cpE. See also note 1, p. 5.

Lemma 3.2. Let p denote a measure supported by the ball A, and put 
f = epB- U%_x. Then the inequalities

— U? - M((f) ( I d/i I < + M(e) I dR I
ojn ,j a)n e

hold at any point of A at which the logarithmic potential U/l is defined (hence 
everywhere in A if p > 0).

Lemma 3.3. Let denote a measure supported by A and of finite logarithmic
energy fp,py. Then

Each of these Iemmas is derived from (1), or directly from Lemma 3.1, 
by integration with respect to dp(y) (in Lemma 3.2) and d p(x)dp(if) (in 
Lemma 3.3), followed by an application of Fubini’s theorem, llius we 
obtain

— Ç [t£/2(z)]2cZz = //> + K [log A + y> (2) 

from which Lemma 3.3 follows. Similarly in case of Lemma 3.2. In the 
special case where \dp = 0 we arrive, following Frostman [5, p. 61 L], at 
the identity (2), § 2, when we let R-+oo in (2) under observation of the final 
assertion of Lemma 3.1.

4. The perfectness of the logarithmic kernel

Lemma 4.1. For any ball A of sufficiently small radius a, the restriction 
of the logarithmic kernel —log |.r — i/1 to Ax A is definite.

Proof. Simple considerations of homogeneity will show that this property 
of the radius a is equivalent to the following inequality, valid for all measures 
(even of variable sign) of finite logarithmic energy, concentrated on some 
ball of arbitrary given radius y.

fp, ^>^log(a/e)-(\d/z (1)
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Moreover it suffices to prove this inequality in the case q = 1 of the unit 
ball Br. The idea of the proof is classical in the case n = 2 (cf. De la Val
lée-Poussin [14, §47] and Deny [4, p. 164]. IL consists in producing a 
measure 2 with \d/. = 1 whose logarithmic potential U*  is constant, say = L, 
everywhere in the unit ball B±. If p denotes any measure of finite energy 
concentrated on Bly and if we write in = yip, then //.-/»/ is likewise of 
finite energy, and since its algebraic total mass is 0, its logarithmic energy 
is >0 according to (2), §2. Evaluating this energy, we get

< //, p > — 2 m \ U^dp + m2 <2, 2 )> 0,
and hence

< p, p>^(2 L - < 2, 2» in2. (2)

The existence of a measure 2 (of compact support) with the stated proper
ties: = constant (= L) on Bx, § c? 2 = 1, can be proved as follows. For
n = 1 or n = 2, the logarithmic kernel fulfills the maximum principle, and 
hence the capacitary distribution 2 of unit mass on B± has the desired pro
perties (cf. § 2), and we get L = w(Bx) = <2, 2>. This leads to the largest 
possible value an of a (in the case n <2): an = exp(tu(Bx)). For n = 2, 2 
is simply the uniform distribution of unit mass on the unit circle, and hence 
iv(Bi) = 0 ( = the value of at the centre 0). This gives u2 =1. For n = 1, 
it can be shown that 2 has the density r given by r(x) = 0 for |.u'| > 1 and

T (a?) = 7i~1 ( 1 - x2)-1/2 for |x|<l;

and this leads to wÇB^) = log 2, ax = 2 (cf. below).
For n > 3, the capacitary distribution on the unit ball Bx has no longer 

a constant logarithmic potential in Bx, and so the existence of a measure 2 
with constant U in Bx (and \<Z2 = 1) must be verified in a different manner. 
Although it is possible to do this in an elementary way, we shall prefer to 
make use of the theory of distributions and at the same time determine 
explicitly the best possible value an of a. We propose to determine explicitly 
an equilibrium distribution T on the unit ball Bx in Rn, that is, a distribution 
in the sense of Schwartz [13], supported by Bx, having the total integral 
T(l) = 1, and possessing a logarithmic potential which is constant on Bx. 
This equilibrium distribution T may then replace 2 in the preceding argu
ment in the case n < 2 (in which case, actually, T = 2)2

1 If, nevertheless, we insist upon constructing a measure A with the desired properties, we 
merely have to “regularize” T by subjecting it to a homothetic transformation of Rn with re
spect to the origin and of a ratio 1 + r>l, followed by a convolution with some infinitely dif
ferentiable function cp > 0, \ <p(x)dx = 1, supported by the ball of radius r about the origin. 
The logarithmic potential of the measure A obtained in this manner has the constant value 
log [«„/(I + r)j in the unit ball Bt.
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We begin by solving the corresponding problem for the potentials of 
order a in Rn instead of the logarithmic potential. For 0 < a < 2, the equi
librium distribution on Bx is the positive measure Tx whose density is 
given by Ta(x) = 0 for |.r| > 1 and 

for jx| < 1. 1 he constant value of the potential Uxa within Bx coincides with 
the energy of order a of Tx. The common value is

F(a/2)Z’(1-a/2 + n/2)
“a~ F(n/2) ’ ( }

These results may be verified in the manner described in Polya and Szegö
[11] for the case n < 3 (cf. also AL Riesz [12, § 16] for the general ease).— 
For an arbitrary value of a, the equilibrium distribution of order a on the 
unit ball Br in Rn can be obtained by analytic continuation of the above 
distribution Tx, and the constant value ux of the potential Uxa within Z?1 
is given again by (3). (The “spectral measure” of Bx is, therefore, l/ua; 
cf. Deny [4, p. 127].). For a = 2 we find 7’2 = the uniform distribution of 
unit mass on the unit sphere. For a >2, Tx is no longer a measure, but can 
be expressed as a “finite part” in the sense of Hadamard and Schwartz. 
(For a = 2k, k = 1, 2, . . . , Tx is a “multilayer” of order k on the unit 
sphere, cf. Deny [4, p. 129].)

Next we pass to the logarithmic potential by a differentiation with re
spect to the order a at oc = n (cf. ( 1 ), § 2). If we apply the operator - (d/d <x)x== n 
to both sides of the equation

in

we obtain on the left the logarithmic potential of Tn. (The additional term 
is the total integral of — (dTx[da)a = n, and this vanishes because Ta(l)= 1 
for every a). The resulting equation

Lrr» = -{âna/âa}a=w in Bx (4)

shows that T = Tn is the equilibrium distribution on the unit ball Br in Rn, 
corresponding to the logarithmic kernel. Similarly, the logarithmic energy 
of T = Tn is -{dua/da}a = w. The 1 argest possible value an of the radius a 
in Lemma 4.1 is now determined by

-log an = {dux/doc}x=n = i 77(zz/2) -1 7Z(1), 
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where ^(Ø = F' (f)/F(t). Explicitly,

1 ( (n - 2)_ 1 + (n - 4)~1 + . . . + 2~1 for even n,
IO <>’ ---  = \

b °n [ (n - 2)“1 + (n - 4)-1 + . . . + 1“1 — log 2 for odd n.

Theorem 4.1. The logarithmic kernel — log | x - y | is perfect when considered 
on a closed ball Acid of radius Q<an.

Proof. The restriction of the logarithmic kernel to such a hall is strictly 
definite according to the inequality (1) together with the fact that the loga
rithmic energy of a measure of compact support is cither finite or + oo (if 
at all defined), cf. § 3. Moreover, the logarithmic kernel in Rn is regular 
(i. c., satisfies the principle of continuity) by virtue of Kametani’s theorem 
(cf. Kunugui [9, p. 78]); and so is therefore the restriction of -log|x-z/| 
to Ax A. It follows from these two properties that this restriction is consistent, 
and hence perfect, cf. [7, Theorems 3.4.1 and 3.3].—Actually, the assertion 
of the theorem remains valid in the case q = an provided n > 3, because 
the sign of equality in (1) never occurs for any measure p, but only for 
the equilibrium distribution Tn which is not a measure when rz 3.

In view of this perfectness of the logarithmic kernel (considered on A), 
the logarithmic potential of measures supported by A has all the properties 
described in [7, Chapter II], First of all, we may introduce the interior and 
exterior Wiener capacity of arbitrary sets £cA:

caP* £ = 1/^(E) = - 1/log y#(E), (6)
cap*E  = - 1/log /*(£).  (7)

Next, we may consider the (unique) interior and exterior capacitary di
stributions associated with an arbitrary set 7,'cA, cf. [7, §4]; and finally 
we may apply Choquet’s theory of capacitability [2], We prefer to state 
the results thus obtained in terms of the logarithmic capacity (instead of 
the Wiener capacity) and the capacitary distributions of unit mass. In this 
way we avoid the limitation to subsets of A ; the extension to arbitrary boun
ded sets is simply a matter of applying a homothetic transformation, and 
using the fact that, for any constant Å’> 0, the kernels log(£/1 x - y |) and 
log (1/1 x - y I) differ by the additive constant log k.

Theorem 4.2. 7o any bounded set E c Rn corresponds a unique measure 
Å With r,

yF = 1, <A, Â> = w(E) = - log y*(E),

whose logarithmic potential has the following properties
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(a) UÅ ^.w(E) nearly everywhere in E,

(b) <w(E) everywhere in the support of A.

This measure Â is called the interior capacitary distribution of unit mass 
associated with E. There is a similar exterior capacitary distribution of unit 
mass, whereby w(E) should be replaced by w*(E)  = — log y*(E)  , and the 
term “nearly everywhere” by “quasi-everywhere”. If E is capacitable, 
these two capacitary distributions coincide. This is the case, in particular, 
if E is compact, in which case Å is supported by E and coincides with the 
capacitary distribution of unit mass on E discussed in § 2.—Returning to 
the two capacitary distributions associated with an arbitrary bounded set 
E, we finally observe that, as in § 2, properties (a) and (b) imply

iv(E) everywhere in the interior of E, (8)
and

Cm (A) + log 2 everywhere in Rn. (9)

Theorem 4.3. If a bounded set E C Rn is the union of an increasing 
sequence of sets Ep, then

y*(E)  = lim y*(E  ).
v

This follows from Theorem 4.1 in view of [7, Theorem 4.4] in the case 
where E is contained in a ball A of radius q<an. In the general case we 
apply first a suitable homothetic transformation as described above.—In 
the terminology of Croquet [2, § 15.3], this result means that the logarithmic 
capacity y (A) is alternating of order 1, a (when considered as defined on 
the class of all compact subsets A of, say, a fixed ball in Rn). Applying 
Croquet [2, §30.2], we therefore obtain the following conclusion:

Theorem 4.4. Every bounded analytic set (in particular every bounded 
Borel set) E C Rn is capacitable with respect to the logarithmic kernel 
-log I x~ y I in Rn:

y*(E)  = y*(E).

As mentioned in the introduction, the case n = 2 of Theorems 4.3 and 
4.4 was settled by Croquet [3] even without the restrictions of boundedness. 
It is not known to the present author whether, for n>2, these two theorems 
would subsist if the boundedness restrictions were dropped. (One could 
define y.^E) and y*(E)  for arbitrary sets E by (6) and (7), § 2, respectively.)
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Working within the framework of the adiabatic approximation, the present paper studies the 
consequences of this model for the y-dependent terms of the nuclear potential energy surface. The 
simplified case of nucleons in a harmonic oscillator potential is considered first. Then, the energies 
and transition probabilities are calculated for y-vibrations of deformed nuclei of axial symmetric 
shape. In addition, numerical calculations, based on realistic wave functions for nucleons in 
deformed nuclei, have been performed in a few cases and are compared with empirical data.
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I. Introduction

In recent years, promising progress has been made in deriving the nuclear 
collective properties, starting from a description in terms of independent
particle motion.

On the one hand, it has been recognized that the shell model binding 
field may be associated with the effect of the long range part of the nucleonic 
interaction. In particular, the deformations of ellipsoidal shape can be shown 
to be a consequence of the quadrupole component of the effective two-body 
force* 1)* 2). ()n the other hand, it was recognized that there are important 
effects of this force which cannot be incorporated into a smoothly varying 
binding field, such as the inertial properties of the collective motion* 3) or 
the potential energy of the nuclear deformation.

To represent this “residual" force, an interaction of especially simple 
properties has been suggested* 4). This is the so-called “pairing force" which 
is analogous to that used in the recent theory of superconductivity* 5), and 
which is a generalization of the force in terms of which seniority is defined* 6). 
Preliminary investigations have shown that such a nuclear model contains 
many of the qualitative features of the observed nuclear spectra* 7)* 8)* 9)* 10). 
A more quantitative test of this model has been performed for nuclei in 
the regions near closed shells* 11).

The aim of the present investigation is to study in greater detail some 
of the features of the nuclear potential energy surface which follow from 
this model. In particular, we consider the dependence on the parameter y, 
which describes the departure from axial symmetry of an ellipsoidal nuclear 
deformation. We also investigate the properties of vibrations in the /-co
ordinate, which are expected for nuclei of spheroidal shape.

For a quantitative analysis of the collective nuclear properties it is 
necessary to start from a nuclear shell model with the appropriate single
particle level spacings and wave functions. However, in order to explore 
some of the qualitative features, we first consider the simplified case of a 
harmonic oscillator well. Subsequently, we present some calculations based 
on a realistic single-particle spectrum, and compare the results with ex
perimental data.

1*
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IL Formulation of the model

The basic assumption of many studies of nuclear structure is that it is 
sufficient to consider the degrees of freedom associated with the particles 
outside closed shells, the particles within closed shells manifesting them
selves only through the Pauli principle and through a renormalization of 
the effective interparticle force.

In this chapter, we give (a) a brief description of the solution of the 
problem of identical particles moving in a certain shell coupled by the 
pairing force; (b) a discussion of the deformed part of the single-particle 
field; and (c) the calculation of the potential energy surface and mass 
parameter.

a) The independent quasi-particle approximation.
We assume that the matrix of the single-particle Hamiltonian has been 

diagonalized and that ev is the eigenvalue corresponding to the degenerate 
single-particle states labelled by v+ and v-. These states are related by 
the operation of time reversal. Using the formalism of second quantization, 
the total single-particle Hamiltonian can be written

~ £V (Cl’ + Cl>+ + 0)
V

Here, cj and cv are, respectively, the creation and annihilation operators 
for the single-particle slate v. They obey the usual anti-commutation relations.

In this formalism, the pairing force is given by

•^pair — ~ G ( v + ( v — co—( co + ‘
V, V)

The lowest eigenvalue of the total Hamiltonian H = Häp -t- Hpair can be 
approximated by means of a variational procedure. One uses a trial function*®)

I 0 > = Tl [Uv + U„cJ + cJ_] I vacuum >. (3)
V

The condition U2 + = 1 ensures that the wave function (3) is normalized.
From (3) it is seen that T2 is the probability that the states v+ and v- are 
occupied. The Ur are variational parameters to be determined by the con
dition that they minimize < (I | H | 0 ). This leads to the equation

2/G =y(er2-rzl2)-1/2
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where zl — U 5 Up . 'Die
V

where

(5)

In consequence, the energy of the first excited state is always greater than 2d. 
An elegant formulation, equivalent to the above procedure, has been 

developed by Bogolubov*12) and by Valatix(13). Ithasbeen applied to nuclei 
hv Belyaev*7). We now summarize some of his results. One starts by in
troducing two new operators (aj, $) defined by the following canonical 
transformation . . .

„T _ iq A _ y ,■ I
L pli»+ ’ | .

ßv = v^v — J

Because this is a canonical transformation, the new operators obey the 
same anti-commutation relations as the old. Thus, they can be regarded 
as creation operators for “quasi-particles” obeying Fermi statistics.

By means of the transformation inverse to (6), we can express H in 
terms of aj, ß$, ßv, and ar. Using the anti-commutation relations, H can 
be put into normal form, i. e., with the aj, ß^ to the left of the ßv, xv. H has 
then the following structure:

H= U + Hri + H20 + Hint. (7)

The term U is a constant. Hn contains terms proportional to (aJaF + ß*  ßv), 
H20 terms proportional to (oßvßl + ßvxv). Hint, the remainder, is supposed 
to have a small influence on the properties of at least the lowest states. 
The requirement that the coefficient of (a^ßl + ßvav) vanishes leads to (4). 

If Hint is neglected, the remaining

L’ + #11 = 2 Vv - j2/G + X Ev(<4 “v + ßv ßv) (8)
V V

describes a system of non-interacting quasi-particles. The single quasi
particle energies arc given by (5). The wave functions can be characterized 
by the number of quasi-particles present. In particular, the ground state 
has no quasi-particles. Expressed in terms of the original particle-creation 
operators, it is just the state (3), so that

a„|0> = £,|0> = 0. (9)

The excited states all have even numbers of quasi-particles. Those with 
two quasi-particles are denoted by

I vco > = aj ßl0 I 0 >. (10)
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Unfortunately, the solutions (.3) and (10) are not eigenstates of the operator 
representing the number of particles

v
(11 )

However, we can at least ensure that the average particle number in the 
ground slate has a prescribed value n, by using a Lagrange multiplier. 
That is, we replace H by H-Ånop. The Lagrange multiplier }. is to be de
termined bv the condition

" = <<» I "op I 0) = 2 (12)
r

Since the forma! effect of the subtraction of Znop is the replacement of the 
ev by ev — à, we see that ). can be interpreted as an effective Fermi energv.

b) 77ie deformation-dependent terms of the Hamiltonian.
We have been using a representation in which the single-particle Hamil

tonian is diagonal. However, the spherical part of this Hamiltonian is not 
necessarily diagonal. We denote its matrix elements by 'flic non-spherical 
part, associated with ellipsoidal deformations, is represented by the scalar 
product of the single-particle and the total nuclear quadrupole moments. 
This lifts the degeneracies characteristic of the central field, and has beim 
successfully used<14)<15) in the explanation of many properties of deformed

sum of the quadrupole tensors of the orbits determined by that field and 
the pairing force.

If we were to take \ H \ P ) as the total energy, the contribution of

nuclei. Thus, the total single-particle matrix element is

£vco ~ £v<i> — Q/u ~ £v^voj>
V

(13)

where x is a coupling constant ultimately determined by the 
force, and

quadrupole

('/,<)>■«> - ! 1/ (9) 1 <"> (Ida)

y? = d/? Z 'i1?*  ^41-* , ( øe) ... ,i,-t...

f ° k 9
(Uh)

P being the total nuclear wave function. Therefore, (13) 
the self-consistency condition that the quadrupole tensor

and (1 lb) imply 
of the field is the
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since it effectively counts each 

the potential energy surface for 
reasonable, if the frequencies associated with changes in the arc small 
compared to the single-particle frequencies (adiabatic hypothesis).

Since we prefer to treat only the degrees of freedom associated with 
particles outside closed shells, we should like to replace (13) by an ex
pression involving the quadrupole tensor, Q^, of these particles alone. The 
ratio has been studiedin several single-particle models for
the equilibrium values of Q^. We make the additional assumption that this 
ratio is independent of Consequently, ()^ in (13) can be replaced bv 
Q/t, and x renormalized.

It is useful to perform a principal axis transformation so that the live 
degrees of freedom (14 b) are replaced by three Eulerian angles specifying 
the orientation of an intrinsic system of axes, and two parameters describing 
the shape of the ellipsoid. In this intrinsic system = Q_x = I) and Q2 = ()_2- 
Following* 16), we use the shape parameters ß and y defined by*

the quadrupole force would be - (Q„)2. This is a factor of 2 too large,

particle pair twice. Thus, the expectation 

regarded as a function of the ()J, gives 

quadrupole deformations. This picture is

Qo = Q = ßcos y

Q2 = Q-2 = *$/|  2 = /?siny/| 2.
(15)

This definition of ß differs from that given in(16) by a factor of dimension 
(length)2. Consequently, the single-particle matrix elements can be written 
in the form

= ^veo-^ß [cos y (<7o)rft> + sin y = svôv(o, (16)
where

‘S’co — 1 /K~ [(92X0, 4" (O'— 2) rm • ( 1 ~ )

The self-consistencv conditions can now be written

Q = 2? O/o)w 2 vr
V

V

(IS)

These can be taken into account by means of two additional Lagrange 
multipliers ß and ô. One must thus replace the ev in (1) by

* In the following, all the directed quantities refer to the intrinsic axes, unless otherwise 
specified.
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^VOJ ~ ~ ~ ll ~ ’''VO) ~ £V^VM f )
where

// = X () + /Z G X S + G . (19)

In order to clarify the role of these Lagrange multipliers it is convenient 
to return to the original description of the quasi-particle approximation in 
terms of a variational procedure. The expectation value of <0|H|0> has 
to be minimized with respect to the Vv. The result is a set of which de
pend on A, //, and g, which are in turn determined from (12) and (18). 
Then, if we allow small variations from this set of Vv, but keep A, p, and g 
fixed, we have

0 = ô < (1 I H I 0 > = ô < 0 I /7spher I 0 >• - // ô Q - aôS.
Thus,

<K0|Hspher|0> 0<0|/7spher|0>
ÔQ '

The energy for the optimum Vv, which we take to define the potential energy 
surface, is „ „

E = < 0 | //spher | 0 > + An - 1 /2 xQ2 - 1 /2 xS2 (22)

(cf. p. 7), and so

ÔE .= CT - x8 = <7.
Od

(23)

At equilibrium, the Lagrange multipliers /'/ and ô therefore vanish, and the 
Hamiltonian used to generate the wave functions has the same deformation 
as the one used to calculate the energy.

c) Calculation of the potential energy surface and mass parameters.
We seek an expansion of the potential energy as a power series in () 

and S. According to (23), it is sufficient to calculate the partial derivatives
ômp ômG

à{)nr~nÔSn and ^-"ÖSn' If we wish Io calculate the restoring force

we require second derivatives, and in most cases these are conveniently 
obtained as follows*.  Lor simplicity, we treat only one independent variable 
which we call R. We write

7/spiier-O7?<

^spher (fv +
V

+ c],._ cv_) + Hpair ■

(24)

This method was suggested by A. Bohr (private communication).
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We assume that the problem defined by (25) has been solved within the 
quasi-particle approximation. Thus we have values of zl, and the Vr. 
/?op can then be written

(26)

Treating — o/?op as a perturbation, the new ground state |0'> is given in 
first-order perturbation theory by

|MZ\ 1A\ , + Uœ\v) . . /o-\
Io >=|0>+g2---------—---------- 1VM>- (2/)

VOJ “1“

Here again the value of o is determined from the assigned expectation value
of /?op, i. e„

r, co
/? = <()' I 7ïop I 0'

( Up ^a>_r to v ) 

Er + E0)
(28)

According to (23) and (28), the restoring force
ô2E . ,
—2 is given byC =

A simple physical interpretation can be given for the terms in (29). 
fhe first one, which lends to preserve the spherical shape, equals the in
crease in the expectation value of Hspher due to the deformation. To second 
order in /?,

<°' I ^spher I 0'>-<0 I /7Spher |0>
JEj rva>
v, co

Ä2

(^jVco T ^co V) 

EV + EO)

(30)

Fhe second term corresponds to the expectation value of the interaction 
which produces the deformation.

However, some precautions must be taken when using | O' > given by 
(27), since its average particle number differs from that of |0). In fact, to 
first order,
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<°' I "op I 0'>-<0 I nop I 0> = eZl22>3. (31 )
r

The linear term in (31) can produce a spurious contribution in (30). In 
order to eliminate this linear term and thus this spurious effect, we must 

require — = 0. second order variation in the number of particles does 
v Ev

not affect (30), since the expectation value of Wspher is stationary in the 
number of particles).

In the Appendix, it is shown that the additional condition

must also be satisfied, due to the requirement that matrix elements of the 
form < 0' I Hint | ( vaj)' ) should contain no terms linear in o.

The conditions X" -g = 0 and 21

vibrations about spherical equilibrium shape. The methods of this section 
can also be used to study the vibrations about non-zero equilibrium de

formations. In this case, the conditions 5 —^ = 0 and vr„v = 0 aie satis-■— r/3 --- j,3

fied for y-vibrations about y = () or y = %. However, for ß-vibrations they 
are not satisfied, because the quadrupole operator connects the ground state 
to the spurious 2-quasi-particle state. Hence, one may not fix Z and zl and 
then do the perturbation calculation; one must rather determine first the 
effect of the perturbation on the single-particle energies and wave functions, 
and then solve (4) and (12) for 2 and d. Although we will not need the 
general expressions so obtained, we give them in the Appendix for com
pleteness.

We calculate the mass parameter, using time-dependent adiabatic 
pertubation theoiv (the “cranking” model). (See also eq. (15) of rcf.<7)).

^g1* = 0 are satisfied for quadrupole

(32)

Using the relation à 11
ôo

(32) can be shown to be equivalent to(19)
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terms in o (cf. eq. (10A)). The formulae for the restoring force and mass 
parameters of the vibrations simplify if the single-particle quadrupole 
moment has only diagonal elements (e. g., the harmonic oscillator)

'A"
V

1
(34 a)

(34h)

Another simple case arises when the single-particle states are degenerate

(35 a)

(35 b)

(35 c)

Mere, 0n = 1 and xn = while Q is the total number of pairs of states 
available.

The above adiabatic treatment of the quadrupole vibrations requires the 
energy of the first vibrational excitation ha> to be small compared to twice 
the quasi-particle energy. A different approach to this problem has been 
given by B. Mottelson(10). He considers particles moving in degenerate 
states, and coupled by pairing and quadrupole forces. The quadrupole force 
all’ects only one of the I = 2 two quasi-particle states, whose energy is given
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by this model to be exactly the same as (35 c). Here the c< of validity
are complementary to ours, since they effectively imply*  a small depression 

* More precisely, the seniorities of the states mixed by the quadrupole force into the ground 
state should be small compared to Q.

** A more general type of shell has been considered by J. M. Araùjo (private communication).

of the vibrational state compared to the 2-quasi-particle energy. Since (35c) 
holds at both limits, we may expect it to be a reasonable approximation 
in between.

III. Expansion of the energy about the spherical equilibrium shape

6na

Belyaev*7) has already studied the dependence of the nuclear surface 
energy on an axially symmetric deformation, using a single-particle Hamil
tonian with diagonal intrinsic quadrupole moments (q0)vu> = (<7o)w an^ 
an assumed density of states. In the following, the simplified case of nucleons 
moving in a harmonic oscillator shell will be treated**,  but the restriction 
to axial symmetry will be omitted.

In order to calculate the partial derivatives and ÔQn-môsm’

we can proceed as follows: Â and J are expanded as power series in the 
variables // and a. It is then possible to construct the power series for Ev 
and Vp and, therefore, the right-hand side of the basic equations (4) and 
(12). We must put equal to zero the coefficients of the successive powers 
of /t and a in the expressions for G and n, since these quantities are inde
pendent of the deformation. This provides us with a set of equations from 
which the coefficients in the expansions for z and Zl can be derived. These 
coefficients are inserted in the power series for V„. The power series for Q 
and S can then be immediately obtained by using equation (18). After 
reversing these last two series and performing the necessary differentations, 
we obtain the following expression for the energy:

3635 Q 77955
448 n 1792

4/?
5(1 + a) Qmax

(36)
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(36 a)

ß and y are defined in (15), M is the mass of the nucleon, and IV the frequency 
of the oscillator field. N, which is assumed to be large compared to unity, 
is the principal quantum number of the oscillator shell. We also define nz 
and n. to be the numbers of oscillator quanta along and perpendicular to 
the z-axis, respectively.

()max 1S the maximum value of Q which can be obtained with a given 
number of particles in the shell. One gets this value in the “aligned coupling 
scheme”(2).

a is defined so that a.V is the maximum occupied value of n±, for prolate 
deformation, with a given number of particles nL and no pairing force. 
In consequence, 0<a<l/|/2. For values of n > Q (a>l/|/2), Qmax occurs 
for oblate deformation. In this case the previous expression also holds, holes 
playing the role of our previous particles.

A few comments can be made on equation (36).
1) The /-dependence of the terms of a given order in ß can be under

stood on the basis of general invariance arguments. The energy of the system 
must be invariant with respect to rotations. Therefore, it can be expressed 
as a linear superposition of the solutions of the five-dimensional quadrupole 
oscillator corresponding to zero total angular momentum. The /-dependent 
part of these solutions can be expressed in terms of Legendre polynomials 
in the variable cos 3/(16). The solutions for / = 0 can be characterized!21) 
by the quantum numbers (n^, Z), where riß is the number of quanta for the 
^-motion and I is an integer that Rakavy<22) has called the “seniority”. It 
is related to $1, the total number of phonons, by the equation = 2nß + 3l.

The /-independence of the term proportional to ß2 simply reflects the 
fact that no function of cos 3/ can be formed from linear combinations ot 
quadratic expressions in cosy and siny. The only invariant expression that 
can be made proportional to ß2 is the /hexcitation built on the ground state. 
This wave function is characterized by the quantum numbers (1,0). For 
3 phonons only one solution is possible, and is proportional to ß3 cos 3/ (0,1). 
The only allowed 1=0 state with 4 phonons is the second ^-excitation of 
the ground state (2,0), which does not depend on /. Also in the case of 
5 phonons only the solution (1,1) appears. It corresponds to the ^-excitation 
of the (0,1) state and, therefore, has the same /-dependence, namely cos 3/. 
Two = 6 states appear for I = 0. The triple /^-excitation of the ground 
state with no /-dependence (3,0) and the (0,2) state which is proportional 
to ß6 cos2 3/.
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In general, one can predict that terms which contain odd powers of 
cos 3 y are multiplied by odd powers of ß; even powers of cos 3 y are mul
tiplied by even powers of ß.

2) The existence of a negative ß3 term*  ensures that, for sufficiently 
small positive values of C, there is a maximum in the expression for the 
energy as a function of the axially symmetric deformation. It is situated at

* A discussion of the ß3 terms, including their effect in the kinetic energy, has been made 
independently by A. Kerman (to be published).

max 3 x max c. (37)

The smallness of C (and therefore of ßm&x) allows us to consider only the 
ß2 and ß3 terms in (36)- One can then easily derive (37).

The existence of a maximum ensures the existence of a second minimum, 
provided the system does not collapse. Thus, the system has started to 
deform even before reaching the transition point C = 0.

It is interesting to note why there do not occur two minima in the curve 
which Belyaev used to illustrate the energy of the system as a function 
of the axially-symmetric deformation. Let us consider a degenerate shell 
whose levels are split by a deformation in such a way that the final single
particle spectrum is symmetric with respect to the original energy. This 
system will have no preference for prolate rather than oblate deformations, 
or vice versa. Thus, no odd powers of ß will appear in an expansion of 
the energy such as (36), because these terms are associated with odd powers 
of cos 3y, which can distinguish between y = 0 and y = n. In particular, 
no ß3 term can occur and therefore the sufficient condition for the existence 
of two minima no longer holds. Belyaev has found the ground-state equi
librium deformation for a system of this kind (constant density of levels). 
One should remember, however, that this system has some kind of y-un- 
stability, because prolate and oblate deformations are equally favoured. 
Neither does the energy surface for the y-deformation of an rq-subshell in 
an axially symmetric harmonic oscillator field present two minima.

The density of states of an axially symmetric harmonic oscillator is 
proportional to the energy; the density in a deformed /-shell is inversely 
proportional to the magnitude of the magnetic quantum number. In both 
cases, the equilibrium deformation is such that the density increases with 
energy. If the shell is less than half filled, this favours prolate deformation
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Fig. 1. Level spectra for (a) a harmonic oscillator field of cylindrical symmetry, (b) an axially 
symmetric field superposed on the spherical field giving rise to a single /-shell.

for tlie harmonic oscillator and -shell (see Fig. 1).
Past the middle of the shell the above arguments apply to the hole states, 
and thus the roles of prolate and oblate deformations are interchanged.

The most direct consequence of the existence of two minima would be 
the appearence of a sudden change in the deformation when the second 
minimum falls below the first. We have seen that the existence of two minima 
requires a ß3 term, which in turn implies /-stability. This is consistent 
with the empirical fact that the transition to deformed nuclei is more abrupt 
at the beginning of the rare-earth region where the nuclei are /-stable, 
than at the end where they approach /-unstability. More accurate predictions 
cannot be given at present, because neither the harmonic oscillator nor the 
j-shell provides a realistic description of the actual single-particle spectra.

3) In the spherically symmetric harmonic oscillator, the consequences 
of the terms proportional to cos 3/ and cos2 3/ have been studied by con
structing their matrices and diagonalizing them in perturbation theory. The 
necessary /-dependent part of the wave functions is given in reference^20). 
The term cos 3/ shifts the first 2+ and 4+ states towards the positions that 
they would occupy in a rotational band. The second 2+ state is pushed 
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rather high. On the contrary, the cos2 3/ term tends to bring the second 2 + 
state below the first 4+ state.

The discussion of the influence of these terms on the transition rates is 
simplified by the existence of a “/-parity”*20) which is equal to the parity 
of I. Any interaction which can fie expanded in even powers of cos 3/ 
preserves a selection rule which forbids the transition from the second 2 + 
state to the ground state; the odd powers of cos 3/ violate this selection rule.

Most non-deformed, even mass nuclei* 23) have their second 2+ level 
below their first 4+ level; in addition, the transition from the second 2 + 
level to the ground state is strongly retarded. The previous arguments suggest 
that both these features can fie attributed to the effect of a term proportional 
to /S6 cos2 3/. One can imagine situations in which the coefficient of the ß3 
term would lie reduced, for example if the single-particle spectrum is inter
mediate between those of the harmonic oscillator and the j-shell, or if protons 
and neutrons are filling opposite ends of similar shells (see 2). The main 
effect of a ß4 term would fie on the position of (he second 0+ state, about 
which very little is known experimentally.

We have considered only the ß- and /-dependence of the nuclear sur
face energy. Similar terms in the mass parameter should also lie taken into 
account in a more detailed study of nuclear vibrations.

IV. Gamma vibrations in a deformed harmonic oscillator field

We assume that the system has a prolate axially symmetric equilibrium 
deformation (/ = 0), and we study the change in the potential energy for 
small changes in /. In this chapter we consider the case of a harmonic 
oscillator field. Because of the very particular degeneracies associated with 
this field, we do not expect quantitative agreement with actual nuclei. How
ever, the oscillator gives a first qualitative picture of a realistic nuclear shell, 
and has the advantage that closed expressions for the vibrational parameters 
can be obtained. In addition, we assume that A7( = nz + nL) is much greater 
than unity.

The operator corresponding to the /-deformation has only diagonal 
matrix elements in a single-particle representation characterized by the 
quantum numbers AT, n± and ny.
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Here, W, is the characteristic frequency for oscillations perpendicular to 
the r-axis.

We can therefore apply equations (34). One can easily evaluate the 
vibrational coefficients in two simple cases.

a) The deformation is so great compared to the pairing force that the 
problem reduces to coupled particles in the n±-subshells. The necessary 
condition for the validity of this approximation is that the two quasi-particle 
energies are small compared to the distance between 2 subshells, i. e.,

G±7q«3xQeq--^z, (39)

where G. is the effective strength of the pairing force which acts between par
ticles belonging to the /q-subshell.

Due to renormalization effects of the other 7?±-subshells, G± is greater 
than the G to be used if the entire jV-shell is treated. We can calculate the 
renormalization by means of a procedure similar to those employed in<7> 
and <10> to account for the influence on a particular unfilled shell of the 
presence of other shells. Let us call Gva> (= G) the pairing force matrix 
element corresponding to a scattering of a pair of particles from the states 
(v + , V-) to the states (co + , co-). According to(10),

(40)

By performing the above summations, and using condition (39), we get

G± — G
1

(41)

In this case, a) the simple expressions (35), corresponding to the “de
generate model”, can be used for the vibrational parameters

h2 i /mwA2
2 G±nX\ h )

(42)

Mat. Fys. Medd. Dan.Vid. Selsk. 33, no. 2. 2
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where O'n = —\2---- , and n' is the number of partieles in the sub-nx \ n± /
shell. If 6^ is the value of 0n for which the axial shape is no longer stable,
(42) and (3G) imply that

2 G n[\w) (43)

Neglecting the renormalization effect expressed by (41), we see that 6°n> 
and 0° are roughly of the same order of magnitude. This implies that the 
fraction of nuclei with axially symmetric equilibrium deformation is of the 
same order of magnitude as the fraction of nuclei which are spherical.

Nuclei with have an axially symmetric stable deformation.
The ratio between the frequency of the y-vibrations and the gap is

(44)

Here the adiabatic condition

For nuclei in the region

implies that

of transition between axially symmetric and
y-deformed nuclei, the potential energy surface does not exhibit two minima 
(cf. p. 14).

b) We can also easily treat the deformed harmonic oscillator field if we 
replace summations over the variable n± by integrations, using a level 
density proportional to the single-particle energies (see p. 15). This is a 
particular case of the level density used by Belyaev in his investigation 
of axial deformations. Equations (46)-(54) are a transcription of some of 
his results into our notation.

The single-particle energies ev can be labelled by n±. With a convenient 
choice of the zero-point energy, they are given by

(45)

W is the frequency of the harmonic oscillator. In neglecting the difference 
between W. and W2 we make an error of the order of the deformation, i.e., 
of order A-1/3 or W1 for the equilibrium deformation. This can be neglected 
in our limit TV » 1.

A new parameter r] characterizing the deformation is introduced:
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3 h jj,
r‘ = MWGq’

where 5 is defined by the condition

C V Q Oh) dnx - r//?i

• 0 ^»x t. 0 ^n±

(46)

(47)

In the axially symmetric harmonic oscillator, the level density, p(n.), equals 
n±. Therefore, the parameters used by Belyaev in order to characterize 
the level density are here

e» - f f - i • (is)

The parameters z and

(49)

(50)

(51)2 1/2

with

(52)

can eliminate q

(53)

The

(54)

24

One 
and ?/

where x, 
varying

•n measures the 
function of r/

.T

m h GN r . , „.,
MW = “Ö" ~ Xn COth d ~ ’

quadrupole moment Q is given by

W1

ft 2 J ,
- MWl ~Xn) COth d~X'

n (1 sinh2?/)

in (46) by its expression as a function of o0, £, xn

A are always determined from (4) and (12): 

3h/ziV
; = ~2MW^~Xn coth^)’

ja = f3Ä/dV\2 (1 -x2n), 
\2MWj sinh2?/

number of particles in the shell and is also a slow-

2*
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Fig. 2. The right-hand side of equation (55) represented as a function of rj = r) , for several 

values of The intersection of these curves with the horizontal dashed line yields the values
““ y.N2 / ll \2

of rj for which the energy is a minimum if the - I — — I is such that 0°n — 0.55.

Equations (53) and (54), plus the condition of the vanishing of the 
Lagrange multiplier at equilibrium (it = '/.(J), define an implicit equation 
for the equilibrium value of ?/.

nN2! ft \2 4 sinh2 ?/ [rt - xn (tj coth - 1)]
G LMW/ 3 (1 - x2) [sinh2 r/ - 2.r„ (3 + sinh2?/) + 2i; (3.rncoth?/-l)]
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, there are two

(56)(

2 8

(57)

Fi

(58)

s2övv _

V

ny = 0 

£ 

Ea„.

Ea»±

<2v7 ^yv
— j?3v

S27
— J7aV L-y

11 kn2
small G

0.1, 0.3, 0.5, 0.7, and 1. It is

(aOv) ■ therc are 
tremum is the minimum at

h2 \2 .—— , there is only one solution to (55), and thus only one mim- 

At î? = 0 the right-hand side becomes indeterminate. However, (36) shows 
that in this case there is always an extremum in the potential energy surface. 

The right-hand side of (55) is plotted as a function of in Fig. 2 for = 

seen that, for a particular and sufficiently 

no solutions to (55) and thus the only ex-
/x A72»7 = 0. For larger (r

values of /] satisfying (55), the lower corresponding to a maximum and the 
upper to a second minimum (cf. discussions on p. 14). For still larger 
xA72

G
mum (the extremum at = 0 is now a maximum). One can also see that 

for each 75 #1 there is a minimum value for stable deformation.
" 4 s2vv

The expressions —3 and —5, needed in (34) for the evaluation
v Ev v Ev

of the restoring force and mass parameter, are to be calculated for the value 
of which corresponds to the equilibrium situation. We find
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(501)

(511)

(551)

8
(571)

A2 G3

(581)

According to (34), by

(59)

whichaxial

Thus stablehas

(60)

Lhe
9

sinh4 r/

the y-vibrations diverges as However,

n

hlVy
For non-zero G, we must solve (55) for n and then evaluate ---- -, using\ 7 / 9/1

2 ~
I has been chosen so

1 - xn

symmetry is preserved until xn = —1/2,

the first half of the shell

s2\ '^VV
—V ljV

1 + xn

3xN2
2

s xN2
(50), (51), (57), and (58). The constant - G
that 6” = 0.55, corresponding to a situation in which the spherical shape 

becomes unstable when the = Hie results are shown in Fig. 3. The 

corresponding curve for oblate deformation is obtained by reflecting the 

curve for prolate deformation about the line = 1.

which implies that 

corresponds to 7^=—.
12 8

prolate deformation.
The mass parameter for 

the significant quantity is the ratio between the energy of the y-vibration 
and 2 J. This ratio remains finite, and is given by

1Î IVy _

256
3N6G5

1- —O
[9 nW

In the limit of vanishing G, and equations (50), (51), (55), (57), and 
(58) reduce to V4/;2 „2
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It is seen that the adiabatic condition for y-vibrations is satisfied for 

0.5 <^<1.5. For prolate (oblate) deformation the frequency of the vi

bration decreases as the number of particles (holes) increases. Fig. 3 also

Fig. 3. The ratio between the energy of the y-vibrations and twice the value of s plotted as a 
function of for 0® = 0 (G = 0) and d°n = 0.55. The full and dashed lines represent the 

two cases in which the calculations were done by replacing the summations by integrations. 
The dotted line represents the result of the calculations done without this approximation, for 

0° = 0.55 and n such that m = 4 is at the Fermi surface for G = 0.n -L

e J L H ' aj * * *

shows that the ratio is not significantly affected by the presence of the 
pairing force.

If G-+ 0, so that ^->oo, we might expect to approach the situation dealt 
with in a) above. Nevertheless, the fact that Fig. 3 shows no subshell effects 
implies that the two methods do not lead to the same result. In fact, for 
fixed N, the validity of method a) places an upper limit on G (see (39)), 
whereas the validity of method b) places a lower limit on G. Evidently 
these regions of validity do not overlap. It is probable that the actual nuclear 
case is better represented by method b). On the one hand, the reduction 
in the observed moments of inertia compared to the rigid values implies 
a mixing by the pairing force of different n.-subshells. On the other hand, 
performing the sums in (4), (12), (54), (56), and (57) exactly for 0® = 0.55,
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N = 7, and n such that n± = 4 is at the Fermi surface for G = 0, leads to 
the dotted curve in Fig. 3. Although subshell effects do appear, the average 
ratio agrees well with the result given by method b).

V. Gamma vibrations in a realistic shell model

In the previous section we found that the occurrence of low-energy 
y-vibrations requires states with high values of rq. However, the oscillator 
model has very special features, in particular the degeneracy of the rq- 
subshell. Before attempting a detailed comparison with experiment we must 
give up these special features and make the single-particle Hamiltonian 
more realistic.

The Nilsson model(24> has been very succesful in explaining the properties 
of odd-particle states in deformed nuclei <15). The nucleons are supposed to 
be in states very similar to those of a deformed harmonic oscillator. The 
states are labelled by (iV, nz, A, A+Z). N and nz have the same meaning 
as before, and A and 2' are the components, along the symmetry axis, of 
the orbital and spin angular momenta, respectively. However, this model 
dillers essentially from the harmonic oscillator in that states with the same 
nz are no longer degenerate.

We must now consider nuclei with both neutrons and protons outside 
closed shells. Apart from some very exceptional cases, there are no nuclei 
in the deformed region in which an external neutron and proton are oc
cupying time-reversed states. Thus, the pairing force we have been using (2) 
will not couple the neutrons and protons. They will, however, be coupled 
by the deformed field. The matrix for the single-particle neutron Hamiltonian 
is, in the Nilsson representation,

(£n)ra> ~ ^vco ~ + ^np $p) (,sn)va> • (®1)

A corresponding expression holds for protons. The coupling constants 
xnp and xpn are to be determined, in principle, by the isotopic spin 

dependence of the nuclear force plus renormalization effects. It will be 
assumed in the following that xn = xp and xnp = xpn. The are the single
particle energies calculated by Nilsson*.  They already contain the terms 
depending on the axially symmetric part of the deformation. The subscripts 
n and p indicate neutrons and protons, respectively.

* Relatively small shifts will be made in the energy of some of Nilsson’s levels in order 
to get closer agreement with empirical level ordering in odd-mass nuclei (cf. p. 30).
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One has then to solve the equations (4) and (12) for neutrons and protons
separately4:. The neutron-proton coupling is expressed by the terms
-«2,nSn(Sp)op and -*npSp(Sn)OÎ>. In the absence of these terms, we can cal-
culate the 'vibrational parameters for separate neutron and proton y-vibra-
tions**. The problem is then equivalent to that of two coupled harmonic
oscillators

,, A2 &P <2 ,^n e2 ,^P o2 v o <•
By 2 + 2 'P + 2 2 ^np^p^if (G-)

The last term contains the usual factor of 1/2.
We can now decouple the oscillators by transforming to normal co

ordinates. The lower eigenfrequency is given by

(63)

We can also calculate the probability of the electric quadrupole transition 
connecting the first y-vibrational state with the ground state. For this pur
pose, it is convenient to regard the y-vibration as a superposition of two 
travelling waves <22>, Q2 and 0-2> Wlth definite angular momentum pro
jections along the symmetry axis, and with the same vibrational parameters. 
The operator sJJi(E2,/z) responsible for the E2 transitions* 14) is related to 
Q/z by 1 A

(«o

where en'p is the effective electrical charges carried by the neutron or the 
proton, respectively. Using eq. (V.34) of ref.<14> the square of the transition 
matrix element for a single oscillator is found to be

|<2|äH(E2,2)|0>|2-1^i^. (65)

For the coupled harmonic oscillators it is

|<2|2R(E2

where

(66)

- *np  \ ^p 

(BnCp-BpCn)
(67)

* Some of the wave functions were kindly supplied by S. G. Nilsson; others were derived 
in collaboration with Z. Szymanski.

** As the operator ,r2-y2 is not diagonal in the Nilsson representation, we have to use (29) 
and (33).

Mat. Kj’s.Medd.Dan.Vid.Selsk. 33, no. 2. 3
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The reduced transition probability from the ground state to the first 
y-vibrational level may be written (cf. eq. V.33 and note 175 of ref. 14)

B(E2", 0^2) = 2 I <2 (E2, 2) | 0 > |2. (68)

We must now discuss the choice of the parameters Gn, Gp, xn, xn 
en and ep*.

In the deformed region, there is no clear distinction between filled 
and unfilled shells. Therefore, one has no definite prescription for the states 
into which the pairing force is allowed to scatter. However, states which 
lie far from the Fermi level contribute to the wave function only through 
a renormalization of G<?) (io). Therefore, we have chosen to allow the pairing 
force to scatter only amongst the 24 states nearest to the Fermi level.

One has to choose an effective value of Gn and Gp such that 2An and 2 A 
reproduce the average differences between the neutron and proton binding 
energies of even and odd-mass nuclei. Furthermore, the predicted quasi
particle excitations should be tested with experimental data. However, one 
should expect some shiftings due to quasi-particle interactions, to the block
ing of some states near the Fermi surface, etc. Therefore, the empirical 
quasi-particle energies give only a lower limit on the value of G.

Finally we have chosen a value of Gn 26.5
A Mev and of Gp

The values of xn and xnp enter into the calculation of the ground state 
quadrupole moment. The method used here is analogous to that used in 
the derivation of (55).

The part of Nilsson’s potential responsible for the deformation is

ÔMW2 2 2o (2 z2 - .r2 (69)

Comparing (69) with the 
tonian (131), we get

corresponding term in our single-particle

ÔMW2
3 it = xQ + i>.

1 lamil-

(70)

Using the Nilsson single-particle energies corresponding to a given value of 
ô, we solve (4) and (12) and thus obtain the electric Qe and mass () qua
drupole moments as a function of b. The inverse of the first function enables 
us to determine <5eq from the observed equilibrium electric quadrupole

The determination of these constants is only outlined here. It is given with more details in(25). 



Nr. 2 27

moment. At equilibrium, // vanishes and thus the value of x which would 
yield these values of deq and Q(deq) is given by

VW2 ôeq
3 Q(^eq)' (71)

moments are

(72)

uni tv for the

(73)

'2where

J/W\2 
h '

d
3

In the rare-earth region, the observed electric quadrupole 
reproduced by

been chosen to be 
those above. The single-particle

In the calculation of Qe and Q, 
states below the selected 24, and zero 
mass quadrupole moment is given by'

A"2
_2

2U2 x'2

.wh; 2 ,2 j/h; 2

Use has been made of the relations<24)
/i ~

(74)

It has been verified that the contribution to the total quadrupole moment 
from the terms multiplied by ô in (73) is equal to the contribution due to 
the first term. In other words, the same results could be obtained by using 
a renormalized value of x equal to twice(9) the value given in (72), and 
using for the single-particle quadrupole matrix elements the value given by 
the first term in (73). The coupling parameter x, calculated in this way, 
is to be considered here as an average value of xTO and xmj).

We are going to calculate the energy and transition probability for the 
y-vibrations in three cases, namely xM = xwp = .r; 6 xw = 2 x„p = 3x and

* The A-7/3 dependence of x has been pointed out by Belyaev^).
** The single-particle matrix elements have been obtained using the expression of the wave 

functions in terms of the asymptotic representation'26)-
3*  
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xn = Knp = The value of .v to be used is equal to twice that given in 
(72). The single-particle matrix element will be

.VH’J (75)

Determination of en and ep. It was found above that renormalization ef
fects doubled the mass quadrupole moment. We have used for the additional 
charge due to these effects a value of Z/A times the additional mass. Ac
cordingly, ep = e(l + Z/A) en = eZ/A, (76)

where e is the charge of a free proton.

Desalts of the calculations. Table I a contains the value of the summations

calculated for

sorne neutron numbers and for the deformation listed in column 1. Columns 4, 
5 and 6 contain the restoring force for the neutron vibration, assuming 
xn = xnp = x; 6 xn = 2xnp = 3x and xM = x„p =• 1.3 x, respectively. Column 
7 lists the mass parameter. Table lb is the analogous table corresponding 
to protons.

'fable II contains the predicted energy of the first y-vibrational level 
and the experimental value.

The two first calculations show that the value of the energy of the first 
vibrational level does not depend on the ratio xn/xnp- At the beginning of 
the deformed region the predicted energies are about 80 per cent greater 
than the empirical ones. There is, however, a correlation between the em
pirical and theoretical trends (i. e., decrease in the energy for Er166). This 
decrease is due mainly to the relative large values of n for the states which 
come near to the Fermi energy.

At the end of the deformed region, the predicted trends and order of 
magnitude of the energy are in good agreement with the experimental values. 
However, a detailed comparison is hindered in the region of W and Os 
by the uncertainty in the parameters used. The predicted energies are 
rather sensitive to the position of the (5101/2) and (5123/2) neutron levels. 
In the calculations, these levels have been depressed by 250 kev in order 
to fit the spectrum of W183. Calculations with the original Nilsson energies 
would decrease the energy of the y-vibrations for 112 neutrons and increase 
it for 110 neutrons (keeping ô = 0.20) and would thus give a somewhat 
better fit. Furthermore, the experimental evidence on the value of 5 is not
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are

xMev-1
2

I xMev-3. The units of C,C' and C"

( 5 -1)
\MW)

are the inverseThose of Xa

of those of Column C refers to the case xw = z„p = x; column C to the
3 xcase 3xn = xnp = — , and column C" to the case xn = xwp = x 1.3. The units 

2 of B arc (MW)2x Mev“1.

Tables 1 a and 1 b. The rare-earth region. The units of Vx are 
(—Ï
\.VW7

Table I a.

.V <5 •^1 y C'n Cn Bn

90............ 1 0.25 39.8 3.38 0.0070 0.0098 0.0053 0.00107
0.30 38.1 3.47 75 103 58 119

92........... 0.30 34.3 3.03 92 119 76 129
94........... 0.30 34.5 3.94 93 119 77 165
98........... 0.30 38.6 5.29 81 105 66 177

100........... 0.30 37.2 4.32 88 111 74 156
106........... 0.25 54.5 9.22 48 70 36 156
108........... 0.20 60.6 10.81 41 62 28 147
110........... 0.20 67.7 14.0 33 53 21 153

1 0.15 75.7 15.8 26 46 15 138
112 1 0.20 68.2 14.2 34 53 22 152
114........... 0.15 74.1 14.4 28 48 17 131

Table I b.

Z Ô — i
^3 CP CP CP BP

1,2............. 1
0.25 24.8 2.01 0.0145 0.0173 0.0128 0.00163
0.30 22.2 1.74 169 197 151 176

64........... 0.30 24.9 2.85 147 173 131 230
66........... 0.30 31.1 5.74 109 135 94 297
68........... 0.30 30.8 5.65 114 138 99 298
70........... 0.30 21.0 1.95 191 215 177 221
72........... 0.25 26.2 1.98 147 169 133 144

'4.............1
0.15 40.0 5.14 84 105 72 161
0.20 34.3 3.82 105 126 93 162

-........... ! 0.15 44.2 6.95 74 93 62 178
0.20 43.2 6.65 76 95 64 176
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Table II. The rare-earth region. Columns 2, 3 and 4 are in Mev. They cor

respond to the case xn = xnp = z; 3 y.np = and xn = xnp = z 1.3, respect

ively. Column 6 lists the experimental energy.

Nucleus <5 (fiWy)th (Z1^)th (/!«y)eXp.27)2,)

Sm152 J 0.25 1.79 1.84 0.77 j 1.092
0.30 1.91 1.97 1.18

Sm1“............................. 0.30 2.11 2.14 1.50
..Gd1?8............................. 0.30 1.9(1 1.91 1.30 1.152

Gd1®?............................. 0.30 1.81
1.45

1.82 1.26 1.182
1 ) 0.30 1.46 0.89 0.964
Dy1??............................. 0.30 1.38 1.38 0.78J 98
Fr166 0.30 1.43 1.43 0.88 (1.787

0.30 1.52 1.52 1.03 0.822
Vh170 0.30 2.05 2.10

.„Hf}7®............................. 0.25 1.44 1.56 0.71
W182 0.20 1.16 1.24 1.222
w}??........................ 0.20 0.92 1.09 0.903
w186 / 0.15 0.65 0.76 0.730

0.20 1.02 1.10 — 1
o«186 0.20 0.75 0.81 0.768

Os“’...............................1 0.15 0.53 0.64 — I 0.628
0.20 0.80 0.85

Os}?"............................. 0.15 0.66 0.73 0.558

so precise for the W and Os isotopes as in oilier rare-earth nuclei. Table II 
indicates good agreement for W184, using ô = 0.20, and for W186 using a 
value of 5 intermediate between 0.15 and 0.20.

In addition, the restoring force becomes very small, so higher order 
terms in S could become more important.

We have also performed the calculations using a coupling constant z 
which is 30 per cent greater than the one determined by considerations on 
the axially symmetric equilibrium deformations. These calculations give 
good agreement for the /-energies at the beginning of the deformed region 
and they lead to /-instability in W and Os. If such would be the case, the 
/-vibrations in Hf should be especially low. However, this fact does not ap
pear to be supported by experimental data.

One can estimate roughly the effect of the neglected Coulomb interaction 
by assuming an ellipsoid with constant density of charge^24*.  The Coulomb 
energy is
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3Z¥ r 5 (Q2_+S2)
5 R 36 A27?4 (77)

A1/3cm Thus the effect of the Coulomb interaction amounts only

to a 4 per cent change in x in the middle of the first deformed region.
Table III contains the reduced transition probabilities calculated by 

means of (68) and parameters determined above. In the Gd, Dy, Er, and 
W-isotopes, the predicted values of the reduced transition probabilities are 
in agreement with experiment. In Os188 and Os190, however, the predicted 
transition rates are about three times the experimental values. The disturbing 
aspect of the discrepancy is the fact that, experimentally, no increase in 
the transition rate occurs as the energy of the y-vibrations decreases. We 
expect such an increase since the decrease in the y-energy is principally 
due to a reduction in the restoring force, which should lead to oscillations
of greater amplitude. On the other hand, if the restoring force goes to zero 
(y-unstable oscillations* 21)) the transition from the second 2+ state to the 
ground state is completely forbidden. This reveals an incompleteness in 
the present treatment, due to the fact that our wave functions do not have 
the required symmetry properties* 16). This symmetrization would give rise 
to interference terms which are responsible for the cancellation of the above- 
mentioned matrix element as the system approaches y-instability. But these 
interference effects should be small if the root mean square value of y is 
small compared with tt/3. Estimated values for this quantity are also listed 
in Table III. They have been calculated by means of 

7r.m.
1/2 Qi 
k Qo

i/B(E2; 00-22)m 
I B(E2;OO->2O)W’ (78)

where B(E2)m is the usual reduced transition probability calculated, as
suming the same charge for neutrons as for protons. However, the ratio 
(77) can be well approximated by the ratio between the reduced transition 
probabilities obtained with the effective charges (76).

It seems that for Os188 and for Os190 the above-mentioned interference 
effects could begin to be important. The inclusion of higher-order terms 
which may have “y-parity” would increase these interference effects.

The present estimates of yr m s may provide also a test about the validity 
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Fable III. Reduced transition probabilities, in units at 10“48e2cm4, for the 
transition from the ground state to the first y-vibrational level. The last 
column lists estimated root-mean-square y-values in units of tt/3 . The inter-

ference effects neglected here arc unimportant if yr m s

All measurements of ref. 28 carry an experimental uncertainty of a factor of 2.

Nucleus Ô B(E2; 0+y)th B(E2; 0>y)[h B(E2; 0->y)th
285 295

71(E2;0->y)Jp} Frms

Ç. 152
90

; 0.25 ....
' 0.30 ....

0.12
0.10

0.12
0.10

0.30
0.17

— 0.20
0.20

Sm1“ 0.30 .... 0.09 0.10 0.13 0.17
64Gd1B9l 0.30 .... 0.10 0.11 0.16 ~0.16 0.17

Gd168VJU 94 0.30 .... 0.11 0.11 0.14 ~0.16 0.16
Dv16066i7J 94 0.30 .... 0.13 0.13 0.24 — 0.18
Dv1641 y os 0.30 .... 0.12 0.12 0.22 0.16

681-1 98 0.30 .... 0.12 0.12 0.19 ~ 0.22 0.16
Kr168
1 A 100 0.30 .... 0.13 0.13 0.18 ~0.22 0.16
Yb17070 1 ul00 0.30 .... 0.07 0.08 0.09 — 0.13

nHf178721ll106 0.25 .... 0.10 0.10 0.21 — 0.17
W182

74 " 108 0.20 .... 0.16 0.18 — ~0.12 0.23
w184 
'v 110 0.20 .... 0.17 0.19 — 0.17 ± 0.05 0.26

W}?®
0.15 .... 0.37 0.34

0.17 ±0.03
0.40
0.28i 0.20 .... 0.1/ 0.18 —

Os18676k7^110 0.20 .... 0.19 0.22 — 0.33

Os!?®
J 0.15 .... 0.58 0.47 — — —
1 0.20 .... 0.19 0.23 — 0.20 ± 0.06 0.36

Os190''*114 0.15 .... 0.35 0.37 0.14 ±0.03 0.48

of the models which take into account only the degrees of freedom associated 
with an asymmetric rotor.

In order to summarize our results, we can say that, without any free 
parameter, we have been able to predict energies for the /-vibrations which 
are in good agreement with experimental data at the end of the deformed 
region. At the beginning, the predicted /-energies are too high, but the struc
ture in the empirical curve is predicted theoretically. The experimental 
transition rates are also well accounted for, with the exception of the Os 
isotopes.

Some calculations have still to be performed in order to test the validity 
of some of our assumptions. For instance, we have to treat the closed shells 
explicitly in order to check the renormalization idea. In addition, the use 
of a central potential which is essentially an harmonic oscillator one, may 
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overestimate the dependence of the matrix elements sVM on the asymptotic 
quantum numbers.
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Appendix

General calculation of the restoring force and mass parameters.
We consider a system at its equilibrium deformation. We assume that 

we already know the values of Â, A and the Vv. We allow a small change, R, 
in the previous single-particle field. The matrix (131), with a = ^equilibrium’ 
ej = xSequilibrium, has to be modified by the addition of a term which is 
generally not diagonal

-(xR + Q)rva)=-grVM. (1A)

Q is again a Lagrange multiplier.
The quantities denoted by a prime will 

field. We shall expand in o and keep only
refer to the new single-particle 
linear terms.

Z = Z +

A'2 = A2 + oA2
(2 A)

We diagonalize the single-particle Hamiltonian by means 
ation theory

S P O ( / vv ^1)

of perturb-

(3 A)*

and use a procedure similar to 
for Ev and Ir2 are

Ev = Ev +

the one outlined in p. 12. fhe expressions

(4 A)

* Since the quadrupole operator is even under time-reversal (q, + w + = rv_wA it follows 
that the + sign in the second equation (3A) holds for both cv+ and cj/_. In consequence, 
H ' ■ = H ■ +0(o2). When this condition is not satisfied (i. e., for the Coriolis force) the folpan- pair - '
lowing treatment may not be valid.
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(5 A)

:

The solution of this system

1

I (6 A)

21

I VV t \

The two basic 
of the value of q. 
vanish, it follows

Âi = F

3 \ 1 
JL t-3

V J^v

equations (4) and (12) must be satisfied independently 
From the requirement that the terms proportional to o 
that

V /

of equations is

'V 11 N 7 rr \

+- y - = o
V r' j>

Using equations (3 A), (4 A) and (6 A), the new values of and Uv can be 
calculated. Then the new ground state wave function | O') can be expressed 
in the representation corresponding to the equilibrium deformation

+sXZ -’-6"''«u(4Æ+4ft)lo>.

V (O^V£(ü £V

Because of the identity (Ev + Ew) (UwVv- UvVM) = (lT(l)Vv+ UvVM)
the third term in (7 A), which contains non-diagonal single-particle matrix 
elements rvw, can be cast into the form

V-> rV(JD CO + t M\ v) + . zq « \
Q 2..------------- I 0 > • (8 A)

v,co \ttv+n'co)

, , J 
Using the relations < 0 | Rop ß^ I 0 > = rV(O (Uv V0J + Uw Vv) and 2 Uv Uv = —, 
and equations (7 A) and (8 A), we find v
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(9 A)

- o

2

(ÎOA)

/? = < 0' | 7?op | O'>

< 9 I Kop I 0 >
,. /I2 >• c

v v i 1 X” vy v
9 — r3
Z v I^v

from which the derivative and thus the restoring force (eq. 29), can be 
immediately obtained.

The calculation of the mass parameter is done according to the pre
scriptions of the “crancking model”:

l<”“>l^|0>|2

E = 2 h £-----------------
r. to Ev + E(l)

I < wo | ^ | 0 > I2

— F + E, co J Jr •'-'co

,.2 ( n v 4 a v F„ ■'W11 va> V'Jvrco~'-7co’v/
1 (p + 77 )3V, CO \^V ' -^CO/

- V— //|2^2 . ^iEv

8V^\ 1 4 4d2

We see that if ^,^ = 0, il billows that Â1 = Zl2 = (). In this
v Ev v Ev

case, formulae (29) and (33) are correct. The first condition £ ~~ = 0 is
v Ev 

related to the non-conservation of the particle number (31). To interpret
/• g

the second condition V v\- = 0 we construct the two quasi-particle per-
V L^v 

turbed wave function in analogy to (27).

I (vco)' > = I VM y - Q
<0|flOpl^>

+ Er)
I £r/va> y, (11 A)

where | vw > = at| 0 > represents a four quasi-particle wave 
function. We require that the matrix element of /¥int between |<vco)'> and 
I O' y contains no linear term in o, and therefore can lead to no quadratic 
term in the expression for the total ground-state energy. From Appendix A 
of Belyaev*')  we have
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£ < fy va» I Hint I O > = - bvw ( itfVg + t'f U,! )
Î»/ Z £

< X I ^int I y£0 > = _ 9 l^vco^ (Uv Ec + ^yVf) + - EvVvUMVM] ■

The last term in (13A) is of order compared to the first, as 

no summation over all the single-particle states. Neglecting it
(27),  (11 A), (12 A), and (13 A),

<0' I Hmt I W')

^<^|ÄoJ0><0|Hint|^wo> ^<0|Äop|^X^|/fint|rco 
fy---------------—---- —-----------------H Q fy Li-,
fjj Eç + E^ Eç + E^

< 0 I Eop I > u-i-v?).

Thus the validity of (27) implies the vanishing of (14A). This
quires

< 0 I Eop ||£> = 0.

(12A)

(13A)

it contains

and using

■ (14A)

in turn re-

e
(15 A)
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Synopsis
The analytic properties of the 4-point function as a function of 6 complex invariants are 

studied in simplest perturbation theory examples. This is a generalization of the work by Kâllén 
and Wightman on the vertex function. The singularity manifolds are: one 4-point singularity 
manifold, 4 sets of the 3-point manifolds of the type discussed by KW, and 6 cuts. These are 
determined in three different ways, including an explicit evaluation of the 4-fold Feynman 
parameter integral which results in a sum of 192 Spence functions. It is shown from the existence 
of the non-trivial geometric envelopes that the regularity domain D^ert is in general not en
tirely bounded by the analytic hypersurfaces. The boundary of the domain is illustrated with 
the aid of the 1-mass surfaces in some typical configurations of the 6 complex variables, showing 
that the 4-point boundary will in general carve out bubble singularities from the 3-point boundary. 
It is hoped that the results here may give some insight into the problem of finding the envelope 
of holomorphy of the 4-point domain determined by the axioms of the local field theory alone.
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I. Introduction*

In the study of the general structure of the local field theory on the basis 
of a few generally accepted postulates1 (viz., field operators transforming 
according to the representations of the proper Lorentz group; positivity of 
energy of physical states; local commutativity for space-like separations; 
etc.), one is led to the investigation of the analytic properties of the vacuum 
expectation values of a product of field operators2 and of related quantities 
such as the retarded commutators3. Several significant physical applications 
in this field have been made in recent years, e. g., the proofs of the dispersion 
relations4, the CPT-theorem5, and the connection between spin and stati
stics6.

The significance of the vacuum expectation value of products of two 
fields (in short, the 2-point function) has been known for quite some time7. 
The complete 3-point analyticity domain E(D3) has been determined by 
Kallen and Wightman8 as a consequence of the above axioms without mass 
spectrum, and more recently the integral representations of the Bergman-

* Preliminary results of Sec. IV were reported by J. S. Toll at the Naples Conference 
(April, 1959) (see, ref. 13). I would like to thank Professor Toll for this.

1 See, e. g., A. S. Wightman, Phys. Rev. 101, 860 (1956). See also, Wightman, in Les 
Problèmes Mathématiques de la Théorie Quantique des Champs, Lille (1957).

2 For a comprehensive survey of the properties of such Wightman functions, see, e. g., 
R. Jost’s Lecture Notes in the International Spring School o/ Physics, Naples (1959); and also 
Jost’s article in ,,Theoretical Physics in the Twentieth Century“, ed. Fierz and Weisskopf, 
Interscience Publishers, New York (1960).

3 See, e. g., H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo Cimento 1, 205 
(1955); and ibid. 6, 319 (1957); V. Glaser, H. Lehmann, and W. Zimmermann, Nuovo Cimento 
6, 1122 (1957); O. Steinmann, Helv. Phys. Acta 33, 257 (1960); and ibid. 33, 347 (1960).

4 See, e. g., N. N. Bogoliubov, B. V. Medvedev, and M. K. Polivanov, Lecture Notes 
(translated at Institute for Advanced Study, Princeton, 1957), and Fizmatgiz, Moscow (1958); 
II. J. Bremermann, R. Oeiime, and J. G. Taylor, Phys. Rev. 109, 2178 (1958); H. Lehmann, 
Nuovo Cimento 10, 579 (1958).

5 R. Jost, Helv. Phys. Acta 30, 409 (1957).
6 N. Burgoyne, Nuovo Cimento 8, 607 (1958); cf. also G. Lüders and B. Zumino, Phys. 

Rev. 110, 1450 (1958).
' In a 1951 paper by H. Umezawa and S. Kamefuchi, Prog. Theor. Phys. 6, 543 (1951), 

one finds, e. g., the assumption about the positive definite energy of all physical states clearly 
stated. Furthermore, this paper also contains an explicit example of a reduction formula, viz., 
for the problem of vacuum polarization. See, further, G. Kâllén, Helv. Phys. Acta. 25, 417 
(1952); H. Lehmann, Nuovo Cimento 11, 342 (1954).

8 G. Kâllén and A. S. Wightman, Mat. Fys. Skr. Dan. Vid. Selsk. 1, No. 6 (1958). This 
paper will be referred to as KW.

1*  



4 Nr. 3

Weil type have been given9 as a most general representation for a function 
analytic in E(l)3) and with arbitrary singularities outside.

The present investigation consists of a generalization to the 4-point case 
of a very special feature which was treated by KW in their discussion of 
the 3-point domain10. To make things perfectly clear as to how this might 
fit into lhe general framework in the 4-point case, it will perhaps be helpful 
to sketch briefly the necessary steps needed in the systematic exploitation 
of the analyticity domains of the n-point functions.

For an n-point function, one starts in the space of (n — 1) real 4-vectors . 
The axiom of positivity of energy immediately allows an analytic continu
ation to the (complex) tube domain with an(i a^ }li kv’nS
inside the forward light-cone. Now there are three subsequent steps:

a) rhe Hall-Wightman theorem11 maps this tube Rn_i into a domain
Ml/_1 in the inner-product space of the l/2n(n-l) complex variables12. 
The first problem is then to determine this primitive domain M)l_1 (i. e., 
to characterize the boundary Mll_1 is a natural domain of holo
morphy13.

b) By permuting the original vectors, one gets a permuted n-point function
and thus a permuted domain Now by the axiom of strong locality,
these permuted functions coincide on a certain space-like region N. 11 
5n then one gets a function analytic in the domain

c) The domain l)n (because of the above union) is not a natural domain 
of holomorphy14. The final step is to find the envelope of holomorphy 
E(R>n) of Dn15.

We now briefly discuss separately the cases for n < 4.

Case 1) 2-point domain: Af1 is trivial; it is just the cut-plane (as is obvious 
from squaring a single (difference) vector 0. The cut is along the positive 
real-axis. Steps (b) and (c) are unnecessary. MY = 1)2 = E^D^.

9 G. Kâllén and .J. S. Toll, in Pauli Memorial Volume, Helv. Phys. Acta. 33, 753, (I960).
10 See KW Appendix III and Section VII.
11 I). Hall and A. S. Wightman, Mat. Fys. Medd. Dan. Vid. Selsk. 31, No. 5 (1957).
12 For n > 5, the number of independent inner products is reduced to 2(2n — 5) by linear 

dependence of more than 4 vectors in 4-dimensional space-time.
13 For n < 3, this is clear, since Vf v 2 are both bounded by analytic hypersurfaces, and 

one knows that one can go no further. For n — 4, one gets non-analytic hypersurfaces, however, 
this is still proved by Kâllén and Toll (private communication; and Toll’s Lecture Notes 
in International Spring School of Physics, Naples (1959)).

14 Cf., for example, D. Ruelle, Helv. Phys. Acta 32, 135 (1959) and thesis (1959), Bru
xelles.

15 For basic notions of the theory of functions of several complex variables, see, e. g.. 
H. Behnke and P. Thullen, Theorie der Funktionen mehrerer komplexer Veränderlichen, Ergehn. 
Math. 3 Nr. 3, Berlin (1934). For a physicist’s summary, cf., e. g., KW Sec. VI lï.
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Case 2) S-point domain:
a) Part of M2 was first treated by D. Hall16; it was simplified and ex

hausted by KW who show that Af2 is bounded by the following pieces of 
analytic hypersurfaces :

16 D. Hall, Ph. D. thesis, Princeton (1956).
17 See Ref. cited in footnote 2.
18 See Ref. cited in footnote 13.

F12: ~3 = ~i +-2 + r + ~i "2/r> 0<c<oo, (for Im z4 • Im z2> 0);

S: r3 = z1 (1 - k) + z2( 1 - 1 /A’), 0 < A< oo, (for Im z1 ■ Im z2 < 0),

and the cuts in and z2.
b) Permutation is straightforward.
c) turns out to be bounded also by analytic hypersurfaces:

Cuts: zk = ()>(}, A =1,2, 3. (0<p<oo).

Fy : zk = zt + Zj - o - ZiZj/f), (ïov Im zk - Im Zi<(), Im zk ■ Im z}<^-,

^1-2 + "2^3 +Z3Z1 _ ^(21 + z2 + *3)  + =

( for Im z1 ■ Im z2 > 0, Im • Im z3 > 0 ) .

Case 3) à-point domain:
a) Part of the boundary of the primitive domain Af3 has been very ele

gantly characterized by Jost17 with a set of 3x3 matrices M = DANA1), 
where M = ||(C« ‘ C«) II, F is diagonal with positive diagonal elements, A is 
symmetric real except for diagonal elements which have positive imaginary 
parts, and N has zero diagonal elements and 1 everywhere else. That M3 
is indeed a natural domain of holomorphy has been shown by Källen 
and Toll18, who have also shown that Jf3 is not everywhere bounded bv 
analytic hyp ersurfa c es.

b) The permuted domain remains to be determined. This can be ac
complished by the present technique if sufficient and careful work is carried 
through.

c) The real difficulty lies in the problem of finding the envelope of 
holomorphy E(D^), which is at the present moment completely unknown. 
It is therefore entirely an open question as to whether or not E(D4) will be 
bounded by analytic hypersurfaces.

At this point, we want to discuss the role of the domain Z)Pert, which 
one gets from simple yet non-trivial examples in perturbation theory. Let 
us recall the following facts:
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Case la) n = 2: Z^ert = E(I)2).

Case 2a) n 3: /)^eTt gives about three-fourths of the answer to £(1)%), 
i. e., /}gert is bounded by cuts and Fkl surfaces. The only thing /)^ert fails 
to tell is the ^-surface (which corresponds to the case when all Im zk have 
the same sign). (In fact, it should perhaps be pointed out that it would be 
extremely difficult to discover the exact shape of E(I>3) if one didn’t know 
beforehand />3Crt; a knowledge of which then enabled KW to actually 
prove the final results.)

It is in this spirit that the present study of the l)%ert is undertaken. 
Namely, it is hoped that perhaps /J^ert might again give some insight into 
the envelope of holomorphy E{D^) in the axiomatic approach.

The work divides itself into two parts. The first part (Sections II—V) is 
devoted to the explicit location of the singularities of the 4-point function 
in perturbation theory and their relevance criteria. The second part (Sec
tion VI) is to determine what constitutes the boundary of the domain; the 
study of this boundary is our primary interest.

The main result of this study is that l)%eTt is also not entirely bounded 
by analytic hypersurfaces. A lengthy analysis of the problem of the geo
metric envelopes for the 4-point singularity manifold is made (Section VI). 
The 4-mass envelopes and the 3-mass envelopes, although they can also 
exist, are shown to be trivial and cannot contribute to the boundary of 
the domain. On the other hand, the two-mass envelopes are quite non
trivial and have most natural relations with the 3-point boundary Fkl sur
faces. In principle, with the aid of an electronic computer, the boundary 
of /^ert can be explicitly plotted. However, we only give here the equations 
and illustrate instead the one-mass curves (which are analytic) for some 
typical configurations in the space of six complex variables to show the 
presence of the 2-mass envelopes.

It is evident that the fact that J)%eTt is not bounded by analytic hyper
surfaces will make the problem for I)^ert to provide some answer to £'(744) 
much less transparent than the previous 3-point case. Of course, it is trivial 
that EÇD^) d However, as already mentioned above, it is still an 
open question whether or not £(1)^) is bounded by analytic hypersurfaces. 
//’7)^ert does have anything to do with E(J)A), then the present investigation 
gives a negative answer.
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II. Simple Examples of the 4-Point Function
II. 1 The Vacuum Expectation Value of Products of Four Fields in 

Ward Theory (x-space)

W e consider in perturbation theory an interaction via a Lagrangian 
702^0203 04, where the 0/s are neutral scalar fields with field quanta mt. 
Expanding in powers of g, we have

(x) = øj0) (x) + g \ dx' zlfi(x - x' ; m;) ø^(x')ø{0)(x') 0£}(x') +.......... (1)

where (Jklm) is a permutation of (1234).
To the first non-trivial order, the vacuum expectation value of the four 

fields reads :
< 0 I 01(x1) 02(x2) 03(x3) ø4(x4) I 0 >

73 -r34)-

x
™2) ô(ql + ml) d((<71 + q2 + q3f 

((å+n?i)R

<9(7i)(9(~ 73)0(7i + 72 + 73)
<5(71 + '»!) <5«/3 + nil) ô ((g4 + q2 + q3)2 + m|) 

(72 + /h2)ä

+ 0«/0 0(72) 0( ç4 + q2 + g3)
<5(71 + nii) <5(72 + mz) <5((7i + 72 + 7s)2 + '«I)

(73+ «'3)«

(9(700(72)6>(73)
<5 (7Î + ^1) <5(72 + /n2 ) <5 ( 73 + n,s)

((7i + 72 4 7s)2 n,2)z?

where x^- = x\- .Vj. 'the 0’s are the usual step functions

The scalar products for 4-vectors are here defined with the metric (+ + + -). 
For the choice of the 4-point function in x-space, a more convenient 

expression results if we multiply (2) with a suitable weight function 
($(m2, 111%, ml, ml) and integrate over all masses zn^>0. In particular, 
following KW, we choose

4
65 ( mj, ml, ml, ml) = A ( - in2 ; ak), ak > 0,

k = 1
(3)
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where

(4)

G>)

a nd
(6)

.9

where

With the aid of the well-known identities

(8)

and
(9)

9

a2 = /.

+ «*•

P~ + *

Ak

in which SU. denotes the usual Cauchy principal part. 
Using

i’ *1
' ,'0(ai a2 Zi + ai a3 ;2 + «1 «4 "3 + a2 «3 "4 + «3 «4 "5 + «4 «2 "6 - ^k (lk)2

1 (• eipx
A(>-a)-(2^-y,Ppi+a

the integrals over all can be easily carried out. The result is: 

da4 </a2 da3 da4 Ô ( 1 2/a*)

we have the expression

/ jj \ j z//n4 dml (Imj dm*  ($ ( ,111%, inj, m4 ) < 0 | 0X ( ,rx ) 02 (.r2) 03 ( .r3 ) tf>4 ( .r4) | 0 >

32 (2^ï)8 ? ) <I(hd(i2(l<13 ' eXP tZ (f/l,r14 + 72-^24 + 93-1’34)]

x i al) ^a(V2’ (l2) z^(f/31rz3) + 92 + 93) 1 r,4)

+ ^r((11 > rZl) z4<1)(92 1 (,2) ^x(93i°3) ^((91 + 92 + 93) 1 °4)

+ z1k(9Î;«i) ^2?(9z; zz2)/4(1)(93’ "3) ^b((9i + 92 + 93)2; «4)

+ z^ä(91> fzl) r(92’ (,2) Aß(Q3; U3) d^((çx + Ç2 + 93) 1 ^4)]

32 (2 Tr)11 j <’1 (^2 + ^4 + <r14) <)(^2 + ^4 + ,r24) ^(^3 + M ’ -r34 )

I <5(Al) <5(A2) j)(A3) <)(A4) I
|A2A3A4 A1A3A4 A4A2A4 AiA2A3|’

= a) ë^d(ei'iô^+a)

= f/a! Z^a2 z/a3 z/a4 ( 1 - ^xk) b(3)(£a.k (lk)
— A2 ^3 W •’ •’ •' • 0
CyCliC

(7)

(10)

0,
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where the six z’s are defined as follows:

2 2
T ~ -r14 > -4 “ “ <r12

  2  2
'2 ~ •r24> ~5 ~ ~-r23

'3 _ 1134 > -6 “ 1 13

(10

Equation (10) is the expression we shall take for the 4-point function I(z; a) 
as a function of the six complex r’s and four real o’s.

II. 2 The Time-Ordered Product of Four Currents (/>-space)

For completeness, we mention that the Fourier transform of the time- 
ordered product of four currents in perturbation theory gives rise in p-space 
to exactly the same integral expression (10). The expression for the square
loop Feynman graph is too well-known to warrant a derivation here19. 
Since, as we shall see later, the singularity manifold has a natural geo
metrical interpretation in terms of such graphs, we shall briefly sketch the 
necessary notations.

Consider also four scalar fields ^°\.r), with characteristic masses 
A- = 1, . . ., 4. Write a*  = , and

Then

7i(æ) = ^40)(æ) </i0)(-T> 

j2(.r) = 9?{0)(x) ^0)(.r) 

73(æ) = ^(æ) ^(æ) 

./4(.r) = <?40)(.r) ri0)(.r)

F (r) < 0 I 7 {(ay ) ,/2(<r2) ./3(,r3) 74(,r4) } I >

= 16 ^^(‘r23 ’ a2) F (-r34 ! a3) F (-r41 !

(2 7l)16 34 ’ exP- Lz (P12‘r12 P23x13 + P34-r14 )]

X H (P12> P23’ P34)

; (12)

where double indices denote the differences ay,-= ay-ay.
*7 1 J

19 For general expressions of Feynman amplitudes, cf., e. g., J. S. R. Chisholm, Proc. 
Camb. Soc. 48, 300 (1952); Y. Nambc, Nuovo Cimento 6, No. 5, 1064 (1957).
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Figure 1. Square-loop Feynman graph

A standard computation then yields:

^(P12» P23 - P34)

<7«i das daß daq d ( 1 — 27a*)  
( ai «2 Ci + ai «3 £2 + «i a4 C3 + «2 «3 C4 + a3 a4 C5 27a*  a*) 2

(13)

where the six C’s are def i net 1 by
9 2

-i -/h2> s4 = _ P‘23
- 9 2
^2 — Pl 3 > S5 = -/>34
- 2 2
-3 - P14 > -6 = - P42

(14)

We see that expressions (13) and (10) are identical and the definitions 
for the ~’s and the £’s are merely the same six invariants derived from a 
set of three independent four-vectors.20

III. Function of Six Complex Variables Represented by a
4-Fold Feynman Parameter Integral

III. 1 Definition of the 7y-Manifold

Both the examples treated in Sec. 11 have led to the same integral ex
pression, namely

fff 1’1 </aida2da3da4d(l-27a*)
------------ /F----------- • (la)

20 Special cases of this square Feynman graph example have been treated independently 
for all six real variables by R. Karplus, C. M. Sommerfield, and E. FI. Wichmann, Phys. Rev. 
114, 376 (1959). This was later extended to the case of two complex variables by J. Tarski. 
.Jour. Math. Phys. 1, 154 (1960). In both works, all the 3-point boundaries are restricted to the 
real domain, and all the masses (internal and external) are held fixed together with stability 
conditions. Subsequently, there appeared a number of papers on the methods of locating the 
singularities of the general Feynman amplitudes without the explicit completion of integrations. 
See. e. g., L. I). Landau, Proceedings of the International Conference on High Energy Nuclear
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This denominator D can be written in various manners for different pur
poses. For instance, using the identity 27afc = 1 under the integral, we can 
write

(17)

where the 4x4 symmetric matrix is defined as

-2 a3 ai"1 - «2 - "1

-4 a3 a2
(18)

U2 - «3

'6 a2 a4 -5 ö3 fl4

The determinant | | will be simply denoted by llJ throughout this
paper, and the manifold ^(z; a) = 0 will be referred to as the ^-manifold. 
It will be shown that the 4-point type singularity of our function /(;; a) 
comes just when this linear transformation (V7^.) becomes a singular one 
(Section IV). The significance and the structure of this ^-manifold are given 
in Sec. III.4.

III. 2 Symmetry of the 4-Point Function

The symmetry of the problem is contained in that of V7. Equivalently, 
we shall define a 3x3 determinant A(c) (a quantity which will repeatedly 
appear in our later discussion), as follows:

'6 ~3 '1-4 ~2 ~1

-4 "1 *2 '5 ~3 '2

"5 ~2 ~3-6 ~ '1 ~3

^l(c) has the following interpretation21: Let Ci, C2> £3» he a set °1 three 
independent 4-vectors, and let the z’s and C’s he related as
Physics, Kiev (1959); J. C. Polkinghorne and G. R. Screaton, Nuovo Cimento 15, No. 2, 
289 (1960); and ibid. 15, No. 6, 925 (1960). An inherent disadvantage of such approaches is the 
lack of explicit knowledge of when and only when the cancellation of singularities will not occur.

21 For real vectors in the Euclidean space, A(x) has the significance of being proportional 
to the square of the volume of a tetrahedron. The principal minors of A(x), which are exactly 
the type of function Z(.r) of KW, have the meaning of being proportional to the squares of 
areas of triangles (cf. remark following Eq. (82)).
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Then

<-2 >2
~1 = “si , *2  = ~ ^2 ’ ~3 = ” ^3

22 When properly identified, energy and momentum transfer variables are conjugate to 
each other in this sense. It is important to note that conjugate indices, ipso facto, do not appear 
simultaneously in any one of the 3-point quantities, e. g., <P(z) or A(z).

:4 = " ( Ti ~ -2)2’ "5 = “ ( ~2 -3)2

/ > 5- 2-6 = — (t3 _ ^1) •

(20)

A (r ) = 4 x Gram Determinant of (Ci, C2> C3) = 4 | (;f • C;) I (21)

Figure 2. Tetrahedron representation for vectors Figure 3. Tetrahedron representation for A(z)

The situation for is depicted in Fig. 2 together with their difference 
vectors. The (Lorentz) squares of the vectors are just the z’s given in (20). 
In Fig. 3, we labelled the six edges of the “tetrahedron” T by these z’s. 
Each of the four faces of 7’ picks out a triplet of z’s at a time. Intuitively 
one would expect each triplet to obey the restriction of the three-point type 
of KW, and this is indeed the case, as will be shown explicitly later 
(Sec. IV).

It is clear then that our problem has the symmetry endowed in this 
tetrahedron, in particular, the permutation symmetry which leaves the set 
of four faces of T invariant. Let us first divide the edges of 7’into two classes: 
Two edges which meet at a vertex of T will be called adjacent edges, other
wise conjugate edges. Obviously for a tetrahedron, for each edge there are 
four adjacent edges and only one conjugate edge. Thus the six z’s break 
into three pairs of conjugate indices22. In our present notation, they are: 
(1,5), (2,6), and (3,4). For convenience, the four faces of 7’ will be denoted 
by Fk, A*=  1, . . ., 4 and labelled in the following order: (456), (235), ( 136), 
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and (124). Note that this is equivalent to labelling the 4 vertices of Fig. 3 
in the counter-clockwise order.

Then the operations which transform the set of all Fk into themselves 
are obviously the permutations among any two pairs of the conjugate in
dices. For example, (1,5) «—> (2,6); by this we mean the following:

In other words, a permutation between adjacent edges is tobe accompanied 
by the permutation between their respective conjugate indices (e. g. cases 
(i) and (ii) above); and a permutation within one pair of conjugate indices 
is to be accompanied by the permutation within another pair of conjugate 
indices (e. g. case (iii) above). This exhausts the symmetry of the problem.

We might remark that the above symmetry property, which is purely 
geometrical, is not confined to the perturbation theory. The quantity /l(z) 
(or the Gram determinant of three 4-vectors) will undoubtedly play an 
important role in the case of the axiomatic approach. In the perturbation 
example Eq. (15), this symmetry is of course trivially implied by the per
mutation symmetry between any two in the integrand, the net re
sult there being the proper interchange of four z’s and two as, which (apart 
from the associated permutation among the mass parameters) agrees exactly 
with our above general prescription of the permutation among two pairs of 
conjugate indices.

III. 3 The Structure of the 3-Point 0Ä-Manifolds and
The 2-Point R -ManifoldsA*

The 3-point 0-manifold of KW has precisely the same structure as that 
of /l(z) discussed above, except that a set of three z’s emerging from one 
vertex in Fig. 3 is now replaced by a set of three mass parameters. Thus 
the ø-determinant is (apart from a trivial factor of 4) just the Gram deter
minant of three 4-vectors C/ with the diagonal elements put on some mass
shells.
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In the present 4-point problem, we have in all four sets of such 0, one 
for each face of the tetrahedron 7’. Thus, for example, the structure of 0X 
can be represented by the tetrahedron 7\ in Fig. 4.

(22)

To every ^^-determinant, there are associated four 2x2 subdeterminants. 
One of them involves pure z’s, i. e. the x(c) defined by KW, e. g. :

(23)

which is associated with the face with all z’s in Fig. 4. To see how Â(r) is 
related to ø(r), we note that (22) can be written as

2 (<3 -4 + (l3 ^2 -5 + G3 °4

(22a)

in which - appeas as the first principal minor of 01 when written in the
form (22a). This feature will also appear in the 4-point case (cf. Sec. VI.2).

The other three quantities are the J?fc-manifolds defined by KW, e. g.,

(24)

which are associated with the faces of one z and 2 a’s in Fig. 4.



Nr. 3 15

It is well known that the manifold Kk(zk) = 0 yields the cut in each 
variable zk in the 3-point case. This feature is also carried over to the 4-point 
case where we have six such B-manifolds, giving rise to a cut along the 
positive real axis in each of the six complex variables. Note that each cut 
is actually an 11-dimensional manifold.

III. 4 The Structure of the 4-Point ‘/'-Manifold

'fhe generalization from the 2-point 7?-manifold to the 3-point 0-manifold 
is strongly suggestive as to how the 4-point ’/'-manifold might be built up, 
and indeed the analogy turns out to be a valid one. As one can build up a 
tetrahedron Tk for <t>k by adding three a’s to the Å’-th face taken out from 
the tetrahedron T for A(z), one may now build up a “pentahedron”23 for 
*/' by adding four legs of a’s to the entire tetrahedron T as the base (Fig. 5). 
The remaining four hypersurfaces of this pentahedron, being tetrahedrons 
Tk with 3 a’s and 3 z’s, represent just the set of 4 «/^.-manifolds in our pro
blem24.

'Fhe ‘/'-determinant has the simple interpretation in the p-space as 16 
times the Gram determinant | (pt ■ p.j) | of four 4-vectors pk such that the

*1

Figure 5. Pentahedron representation for 0(z; a)

diagonal elements are put on some mass-shells: -pk = mk = ak, and the 
oil-diagonal elements are re-expressed through the difference vectors, e. g.,

23 The above intuitive terms such as “tetrahedron” and “pentahedron” should perhaps 
be properly changed into “n-simplex,” n = 4,5 respectively.

24 By our previous labelling of the four faces of T (Sec. 111.2), the index k of 0/,- is such 
that at does not appear in 0/(.
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“PiPj (.Pi Pj) Pi Pj ~m ^i (^j

for some m. These four pk's may just be identified with the four internal 
momenta of the square-loop Feynman graph (Fig. 1). On account of the 
momentum conservation at each vertex, these difference vectors Pa + \ 
Pi Pi + i are just *he  four external momenta anil the six z’s are then the 
six invariants built up from these pii + i (cf. Eq. (20)). From this, it is 
clear that the 4-point singularity manifold V7 = 0 can be interpreted to 
arise just when the four pk’s are not linearly independent25.

25 This was independently noted by Landau loc. cit., and implicitly implied by Karplus, 
et. al., loc. cit., for the real case.

IV. Sources of Singularities of the 4-Point Function
IV. 1 General Discussion

From the integral representation (15) it is clear that, with a given set 
of parameters ak, the singularities of I(z; a) come from a certain manifold 
of z such that the denominator J) vanishes somewhere within the range of 
integration. Of course, not all such points need be singular points of /(z), as 
we can easily convince ourselves that the integration may very well smoothe 
out some of the singularities of the integrand. In fact, from the 3-point 
example treated in KW, we see that there are some delicate cancellations 
which made

a) only part of the 0-manifold as relevant 3-point type singularities; and

b) the relevant portion of the cut (2-point singularity), in the case of 
non-vanishing masses, actually starts from z*.  = (|/am + |/am)2, but not

— J/ ^n) ■

It will be shown in Sec. V that an inherent cancellation of this nature 
will again occur in the 4-point case.

In this section, we shall mainly locate the sources of all possible singu
larities of /(z). It will be shown explicitly that these singularities arise only 
when the quadratic roots of D in oq become double roots. The conditions 
for such double roots at each stage then yield the singularity manifolds 
for the 2-point, 3-point, and 4-point type, respectively.

We now briefly compare the methods we shall adopt in the 4-point case 
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versus those available for the 3-point case. In the case treated by KW, the 
corresponding original expression is

where

... , <5(1 .....
------------- ----------------- • (2o)

= Xioc2z3 + x2x3zr + ^^22- Xxjdj.. (26)

It is obvious that, when one of the 4 a’s in the 4-point case becomes zero, 
I) of (16) (apart from a trivial relabelling of the indices) goes over to I\ 
of (26).

The 3-fold integration in (25) can be carried out in a straightforward 
manner, but the result contains a sum of 16 Spence functions26 which 
are somewhat inconvenient. Instead, KW applies the differentiation Zd/dak, 
which, on account of the identity Zxk = 1, has the net effect of raising the 
power of l)r by one for every such operation. 'Phus27

26 For a comprehensive treatment of Spence functions, see, e. g., L. Lewin, Dilogarithms 
and Associated Functions, London (1958).

27 One might note that, in a 2-dimensional (1-space, 1-time) space, the 3-point function 
without differentiation actually has the form (27). (This is a remark by Profs. Kâllén and Toll.)

Mat. Fys. Medd. Dan.Vid. Selsk. 33, no. 3. 2

\ (27)
— d(lk
k = 1

Now (27) when integrated out contains only logarithms (KW (A. (46)):

X d 1 1 \ Pk zk — am — an +1/ Rk
> — H(z-,a) =----- > ----log------ - , (28)

dak 2 0—p' Rk zk-am-an-]/Rk

where 0 is of the structure of (22), Rk of (24) and Pk = d<P/dak.
The 4-fold integration (15) can of course be carried out by force, 

but at first sight one is rather inclined to feel uneasy about a sum of 192 
Spence functions. In this respect, it resembles (25). Unfortunately, how
ever, the above differentiation technique will no longer save the situation, 
and the Spence function terms always persist in any explicit expression for 
/r(z), where v refers to the power of I) in (15). Since the case v = 2 is the 
simplest of all, and there is no merit in going to higher v, we shall just 
stay with (15).

At this point, it is instructive to learn the lesson from the 3-point case. 
A study of the 3-point function H(z) of (25) in the undifferentiated form 
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led us to rederive the same singularity manifolds as those obtained from 
the differentiated form (28). There are two ways for this, which are es
sentially equivalent:

(a) The first method is to discuss the singularities under one remaining 
integral sign. We have, after the completion of a 2-fold integration, the fol
lowing expression:

where

(29)

A’(a) = Â(c) a2 - 2 P3 a + J<3 = x(r) (a - ^ ) (a - ^2)

Thus, as far as the integrand of (29) is concerned, when the 3-point roots 
fall into the range (0,1) in the a-plane, 2V(a) = 0 gives an apparent 

singularity. However, at this point log /(a) becomes log 1 = n.2zti (n = in
teger), in which lies the inherent cancellation. As long as the two roots 
remain distinct, W(z) can still be defined by analytic continuation into an
other sheet of the Riemann surface even when one (or both) has (have) 
actually passed through the open interval (0,1), since in this case one may 
very well deform the path of integration to avoid meeting with the roots. 
The upper end a = 1 is perfectly harmless. At the lower end a = 0, how
ever, one gets the P3-manifold (which gives the cut in the c3-plane). On the 
other hand, when the roots tend to coincide after they have crossed over 
the range (0,1) an odd number of times, then the above deformation of 
the integration path is no longer possible, and H(z) will have a singularity. 
The condition for such double roots gives precisely the manifold 0(r) = 0 
(apart from the trivial alternative z3 = 0 which we disregard). The only 
other singularities H(z) can have is at the coincident zeros or poles of 
/(a) which can be easily seen to lead to the and P2 manifolds (cf. (46) 
and the remark thereto).

In this way, one is able to relocate the singularities of the 3-point func
tion 77(r) in the undifferentiated form, which agrees exactly with what one 
gets from the explicit differentiated form (28).
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(b) The second method is to carry out the last integration of (29). As 
already mentioned before, one gets Spence function terms besides logarithms 
here. However, a careful examination of these terms shows that, with proper 
manipulation, they are still manageable. One first learns which combination 
of the variables go into each of the Spence functions by explicitly 
differentiating them with Zd/dak. From this, one sees how the Spence func
tions unfold and all the inherent cancellations thereof. Once this is done, 
one can, taking into account the symmetry of the problem, again recover 
the singularities of the 3-point function H(z) in the Spence function form. 
We did this only as an exercise to get an insight into properly handling the 
corresponding (and more complicated) Spence function terms in the 4-point 
case.

In the following, these two approaches are generalized to the 4-point case.

IV.2  The One-Fold Integral Representation

We now proceed to discuss the singularities of 7(z) after a straight
forward completion of integrations over three of the four a’s. We have, 
before a final integration, the following expression28:

28 We have performed the integrations over a4, a3, a2, The remaining integration is over 
av where we drop the subscript. This singles out the triplet (456). Of course, by symmetry, 
the order of integration is entirely immaterial. Had one left the last integration over a/(. undone 
for any k, the net effect would be a trivial permutation of T1 <—> Tk from Eq. (31).

\ ' 4^(a)
logtø(a). (31)

Here the denominator in front of the summation sign has singled out, in 
the language of Sec. 111.4, the tetrahedron T), viz., the set of variables 
(c4, z5, "6; d2, as, u4). The summation is thus extended over the remaining 
three 7} + 1, j = 1, 2, 3, of the pentahedron of Fig. 5. (Recall that 7). was 
defined by deleting ak from the pentahedron).

Now the symbols in (31) stand for the following:

(33)

2*
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where 'Pkk denotes the A-th principal minor of the ^-determinant. Note 
that 0! is explicitly given in (22). Z(z) is given by (19). We have also de
fined in (23). The three remaining similar expressions (one for each of 
the remaining three triplets) can be simply defined as

(35)

(30)
where

(37)

The quantities A)(a) and /;(a) are precisely of the same structure as 
appearing in the undifferentiated form of the 3-point function //(;) in 
Here

those
(29).

r dm

ÂJ+1 = (2/1)^, j = 1, 2, 3.

Furthermore, we have in (31)
,, 3A(z) Ö0!M (a) = —---- - .

O Zj Ö Clj _i_ i

and the primed index /' denotes the conjugate of j in the sense of Sec. 111.2, 
viz., / = (1, 2, 3); /' = (5, 6, 4), respectively.

The quantity /?6 is given explicitly in (24), and the remaining five R^tz^) 
are obvious from symmetry, as they can readily be read off from the prin
cipal 2x2 minors of the ^-determinant.

(38)

dzk

Finallv we have:

F j/A;(a)

in which the indices (/"kl) form a triplet. The identification of indices k 
and I is unique for each /.

We note in passing that the integrand in (31 ) evaluated at a = 0 is pre
cisely the final expression (28) for the 3-point function in the differentiated 
form, now for the variables (z4, c5, -6). (This is certainly to be expected, 
and serves as a check for (31)).

Having thus identified all the quantities that appear in (31), we proceed 
to note a number of identities which will be important for our subsequent 
discussions. We have, for / = 1, 2, 3,

(39)
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where ()'kl) forms a triplet in (40) and (41).
Furthermore, we have

3
4/^ ( a ) = - • ( 1 -a)

j = i

<£ - 16/l(z)$t + 4At'P(Z; a), k- . . ., 4.

(42)

(43)

Note that, for a = 0, (39) reads

(44)

which is just the 3-point relation (KW (A. 46d)), now for the variable (456).
On the other hand, (41) reads for a = 0

(45)

which is a variant of (44) in that the role of the corresponding a’s and x’s 
is now interchanged. The 4-point analogue of this will be noted in Eq. (110). 
Equations (43) which are the proper generalization of (44) to the 4-point 
case will also play a dominant role in our later discussion of the boundary 
(Sec. VI). It might be of some interest to point out that identities of the ty
pes (43) and (44) have a rather natural interpretation in terms of the deter
minant expansion by means of a theorem due to Jacobi29. An illustration 
of this is given in Appendix I).

For completeness, we might mention that the quadratic expression 
(z^a2-!- 1 /2 dRjdama + cin) appearing in (40) and (41) is the 2-point analogue 
of the 3-point quantity Ay (a) defined in (36), or (30). In fact, this is the 
expression used by KW to discuss the singularity on the ent, viz. (cf. KW 
(A.47)):

29 See, Appendix D.



22 Nr. 3

Note that this 2-point denominator is what one gets by multiplying the nu
merator and the denominator of the individual factor in (38) (cf. (40)). 
Therefore we see that the zeros or poles of jfy(a), which give apparent 
singularities to the logarithms in the integrand of (31), are really confined 
to the individual cuts in the z’s.

We see from (46), (29), and (31) that in the passage from the 2-point 
to the 3-poinl and to the 4-point functions, there is a perfect pattern of 
generalization, especially in the respective denominators of the integrands 
before the final stages of integration, viz.:

Quadratic Form; Discriminant ;

2-Point : 2 , Rfc
* 2dam Rk- 2x2 Determinant

3-Point : z(z)a2-2 x + lij;
daj 7 0: 3x3 Determinant (47)

4-Point: . 1 d W
2 0 a*  K lF: 4x4 Determinant

A word about the definition of the branches of log/;(a) in (31) is now 
in order. From the original integral representation (15), we note that, where 
all z’s are negative real, Z(z) is not only analytic but also positive. Hence 
we may define the log /7-(a) to lie on its principal sheet for such z’s and 
the rest is done by analytic continuation from there. With this definition, 
for instance, we will always have on the physical sheet log /;(1) = log 1 = 0 
at the upper limit of integration. Note that z/l) = 1, independent of the z’s 
(cf. (52) below). It should perhaps also be pointed out that for as(0,1), 
A;(a) are all positive for all negative real z’s. For general z’s, the sign of 
the square root j/JV; is rather unimportant since log will just compen
sate for any change of sign in front of l/Aj.

IV. 3 The 4-Point Roots

The 4-point roots r12 are now defined as the zeros of the 4-point qua
dratic expression in (47), (which is the denominator in (31)). By virtue 
of (43), we have
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1'1, ä(z) =

-Q±|/Q^-16/lØi

W) 4 4(-f (48)

Here we see explicitly that the condition for r to be a double root corresponds 
to the Ø-rnanifold. (The other alternative Â1(z4, z5, z6) = 0 is trivial).

Thus, from (39), it follows that

i = l,2
j = l, 2, 3

(49)

and, together with (42), we have in particular

1-1 ri ~
= 0. (50)

Furthermore, it can be shown that
3

; = 1
(51)

where the summation sign 2?' and the product sign 77' are meant to take 
care of the sign condition of (49).
Note that

Zj(l)-1, j—1,2,3 (52)

holds automatically from (37), regardless of the manifold

Finally the special case

y = l
(53)

now holds on the (^-manifold. This last identity was first established in 
KW and played an important role in their discussion of the 3-point function 
in the differentiated form30.

The identities (49) and (51) are crucial for the 4-point case. Equation (49) 
says that at the vanishing of the 4-point denominator in (31), all the coef
ficients of the logarithms become identical, which allows the three log terms 
to be summed. Eq. (51) guarantees that they add up to log 1.

30 Cf. KW (A. 50). There the factor —-----  should read yA(z).
1/Â(z)
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Therefore, just as in the 3-point case, the change of the branches of 
this final logarithm will determine the relevance of the 4-point singularity. 
We shall leave this problem to Sec. V and Appendix A.

With the above preliminary, the integral (31) can now be written as

/(z;a) =
- 1

2.1(c) • (n — r2)

where
(•1 (I y_

.'o a - r,

The situation in the a-plane is quite clear. Namely, one has only to 
watch out for the three sets of roots (i. e. the 2-point, 3-point, and 4-point) 
of the expressions (47) versus the path of integration (0,1). Equation (54) 
explicitly shows that singularities of the 4-point type occur when the 4-point 
roots become a double root and when there is no cancellation among the 
F’s. We now discuss separately the two cases zq # r2 anc* ri = r2-

IV. 4 The 2-Point and 3-Point Singularities in the 4-Point Function

We first discuss the case when the 4-point roots are distinct: zq r2 
(54). Obviously any singularity must then come from each F^r^ and further
more these singularities may still be subject to cancellation when the sum
mation over j is carried out. The functions FAr() defined in (55) are evidently 
multi-valued. When explicitly evaluated, they involve logarithms and a 
sum of 32 Spence functions for each i = 1,2 and j =■ 1,2,3. It is clear that 
the 4-point complication for each F^r^, as compared with the 3-point 
function H(z) in the undifferentiated form (29), arises from the presence 
of the extra factor (a-rf)-1 in (55), which at first sight may cause an ap
parent singularity for the integrand when passes through the range (0,1). 
However, this is actually not a relevant source of singularity as long as 
r1 r2, and z^ 5^ 0, or 1, since in this case the path of integration can be 
easily deformed. Stated otherwise, on account of the identities (49) and 

3
(51), FJ.(ri) can still be defined by analytic continuation to a different 

/=! 
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sheet of the Riemann surface whenever a single root r{ crosses over the open 
interval (0,1). As already remarked above (following (47) and (52)), the 
upper limit of integration is entirely harmless. On the other hand, i\ = 0 
implies the øj-manifold, which is exactly the 3-point singularity corresponding 
to the tetrahedron 7). The other three manifolds are 0y + 1 = 0 which 
arise from the set of 3-point denominators A) (a) in (55). This is evidently 
clear from our discussion of the 3-point function in the undifferentiated 
form (29). The remaining singularities in FArt) in (55) then come from

a) when the 3-point roots take on the lower limit 0: giving the manifolds 
By = 0 for each j. This results in one cut each for (z5, z4, z6); and

b) when the 2-point roots (i. e. the zeros and poles of tø (a)) become 
double roots within the open interval (0,1). These 2-point roots result in the 
manifolds Bm(zm) - 0 for m = 1,2,3 and can take on the value 0 only 
when the appropriate masses are zero.

We thus conclude that, for the case r17^r2, the singularities of our 4-point 
function 7(z) of (54) are the degenerate ones of the 3-point and the 2-point 
types.

The above statement can also be explicitly verified by completing the 
last integration of (55) and then discussing the resulting expression. This 
is done in Appendix A.

We might mention that, for the case there exists yet another way
of looking at the singularities of ^V/7f(r,-). Consider now the expression 

y
4
\ d r

J(z;n) = y x- [-2 J • (/'! - r2) • 7 (c; o)]
—— o ak

(56)

k = 1 3

31 These details are contained in the Appendix B of the author’s University of Maryland, 
Department of Physics Technical Report No. 186 (unpublished).

As far as the singularities in z’s are concerned, J(z) will for all practical 
purposes yield as much information as 7(z), as long as we are away from 
the ’/'-manifold. Now the right-hand side of (56) is free from Spence func
tions; and one can readily see, after a straightforward computation, that 
one gets singularities of the 3-point and the 2-point type.31
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IV. 5 The 4-Point Singularity

Now we come to the case when the 4-point roots become coincident: 
ri = r2’ or we are on the ’/"'-manifold. From (54), it is clear that one gets 
a 4-point singularity on the ^-manifold unless there is a cancellation among 
the £ FjÇrJ. For this we may divide the ^-manifold into lPR and lPIR, 

j
where the superscripts R and IR denote respectively the relevant (no cancel
lation) and the irrelevant (no jump) portions of the ’/'-manifold. It is easy 
to convince oneself that lPIR is actually non-empty. Obvious examples are 
the cases when all Imz^ have the same sign, or when all z„ are negative real, 
since in both cases we know from the original integral representation (15) 
that Z(z) is analytic there.

The relevance criteria for the ’/■'-manifold are treated in Sec. V.

IV. 6 Summary of the Singularity Manifolds

In this section, we see that the 4-point function /(z) admits the following 
types of singularities:

(a) 4-Point Singularity: on the manifold ’/'(z; a) = 0;

(b) 3-Point Singularity: on the manifolds (t>k = 0, k = 1, . . ., 4;

(c) 2-Point Singularity: on the manifolds R/t = 0, ft = 1, . . ., 6.

In terms of the determinants, theøfc’s and the /(,/s are just the appropriate 
principal minors of the ’/'-determinant (cf. Sec. III).

V. The Relevance Criteria for the 4-Point Singularity Manifold

We have seen in Sec. IV that the 4-point singularity arises when the 
roots rt defined by (48) become coincident. Now we want to examine the 
behavior32 of these merging roots more closely in connection with the 
question of distinguishing lPR from 'PIR.

32 In fact, the following technique was first applied to the 3-point case in the undifferentiated 
form (29) where one is able to re-derive the criteria for the change of relevance of the ø-manifold. 
An explicit illustration of this is contained in the Appendix C of the reference cited in footnote 31.
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To be specific, let us consider, for the sake of convenience, zx, . . ., z5 
as being fixed, the roots iq 2 as functions of alone. Suppose we make 
an arbitrary path ab in the z6-plane, which connects a point a in the known 
analyticity region (such a point can always be chosen; e. g., at -oo) to a 
point b lying on the ’/'-manifold (Fig. 6). Under the mappings c6-> rt(~6), 
2 = 1, 2, this path ab is now mapped into, say ArB and A2B, respectively, 
in the a-plane. Then there are the following possibilities:

Figure 6. Path of continuation to P- 
manifold.

Figure 7. Behavior of the 4-point roots: 
Irrelevant merging.

(i) Neither of the paths AtB crosses the interval (0,1), e. g., Fig. 7;
(ii) One of the paths crosses over the interval (0,1) once, e. g., Fig. 8;

or if more than one crossing is made, then either
(i') the net crossing is even and without encircling the endpoints; or
(ii') the net crossing is odd, or with encircling of the end points.

Situation (i) or (i') is obviously harmless. For such cases, (the path of inte
gration can be easilv deformed for the case (f)), the function FAr) has 

y
no jump, hence there will be a cancellation in (54); the singularity at 
7’1(5) = r2(5) is thus removed, and one says that the portion of the ^-mani
fold, to which the point b belongs, must lie in \PIR. On the other hand, 
for the situation (ii) or (ii'), the function does have a jump, and hence no 
cancellation. One gets then an actual singularity at the point b, and the 
portion of the ’/'-manifold to which b belongs will lie in ¥ZÄ.

The technique thus described, of plotting the explicit behaviors of 
the merging roots ri in the a-plane versus the path of continuation in the
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z-space from the known analyticity region to the part of the 0-manifold 
whose relevance is to be determined, although most primitive and tedious, 
is a rather useful and practical procedure to really pin down the relevance 
question. Except in some very special cases it is not ncessary to plot these 
merging roots, as one can instead rely on more general criteria. Since we 
do not expect the whole ^-manifold to be relevant, the relevance of this 
must change when it intersects with some other manifolds. In the following, 

Figure 8. Behavior of the 4-point roots: 
Relevant merging.

Figure 9. Path of continuation in the neigh
borhood of ( V7 = 0) n (0 = 0).

we shall show that these other surfaces are just the relevant portions of the 
øfc-manifolds of the 3-point type.

We shall first state the relevance criteria for the 3-point singularity 
manifold 0 = 0:

Lemma 1 (KW): The 3-point singularity manifold 0 = 0 changes its 
relevance at its intersections with the relevant portions of the 2-point sin
gularity manifolds = 0, i = 1, 2, 3.

This statement is evident from the explicit form (28)33.
We can now state in perfect analogy:

Lemma 2: The 4-point singularity manifold V7 = 0 changes its relevance 
at its intersections with the relevant portions of the 3-point singularity mani
folds 0A. = 0, A' = 1, . . ., 4.

33 Actually in KW, the problem of choosing the relevant portion of the ø-manifold is 
quite easy. Since one knows enough from the permuted domain D3 where one must have ana
lyticity, an explicit knowledge of the branches of the logarithms is not mandatory. A more 
transparent way of seeing this independently is by discussing the behavior of the 3-point roots. 
This is given in Appendix C of the reference cited in footnote 31.
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Il suffices to show this for k = 1, as the others will obviously follow from 
symmetry. There are two ways to see this:

(a) One observes that one of the two (4-point) roots, say ;y, goes through 
the end-point zero of the interval (0,1) in the a-plane when the z's cross 
the manifold (P1 = 0 (cf. (48)), while the other root (r2) does not and will 
essentially remain unchanged. Thus when the two roots tend to merge, in 
one case (i. e., corresponding to one side of the 0}-manifold), the paths of 

Figure 10. Merging of the 4-point roots: 
On one side of the 01-manifold.

Figure 11. Merging of the 4-point roots: 
On the other side of the dy-manifold.

the roots do not cross the cut (0,1) (Fig. 10); while for the other case (i. e. 
corresponding to the other side of the 01-manifold), one of the roots (/y) 
does cross over the cut (0,1) once (Fig. 11). Thus /> Fj(j\) crosses over to 

7
a different sheet of the Riemann surface, while y Fj(r2) remains on the 

j
original sheet. Therefore, there is a cancellation on one side of the ^-mani
fold, but not on the other side. Thus one concludes that the transition be
tween ÏFR and lP/R takes place at the intersection with the ø-manifolds.

(b) Another way to see this is by examining the explicit expression for 
y FAi^). The details are included in the Appendix A. We simply state 
j

that the results there confirm the above simple argument.
W e conclude this section with a few remarks:
(1) It is clear that, since the whole 0-manifold cannot be all relevant, 

lPR is non-empty only if the ^-manifold has an intersection with 0^ (the 
relevant portion of the 0^-manifolds). Furthermore, as we shall see in Sec. VI 
that the singularity domain of the 4-point proper is actually compact, 07' 
is non-trivial only if the W-manifold intersects twice with the 0^. The con- 
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dition that such intersections occur is extremely complicated, and we shall 
only state later (cf. Sec. VI) some necessary conditions.

(2) The pattern of generalization from Lemma 1 to Lemma 2 strongly 
suggests that this feature may perhaps very well be valid for the general 
n-point domain in the perturbation theory. However, we do not attempt 
to prove (or disprove) this conjecture, since this lies outside the scope of 
the present investigation.

(3) Since dI)£eTt is actually part of dE(JD^), Lemma 1 is likewise valid 
in the axiomatic approach. In the 4-point case, from the preliminary results34 
for the d/j£rim, the general spirit of Lemma 2 (i. e. deleting */ z in leaving 
the question open as to whether this ^-manifold has any relation with the 
d/)4rim (cf remark in Sec. VI.7)) seems also to be valid in the axiomatic 
approach.

34 Private communication from Prof. Kâllén.

VI. Determination of the Boundary of the 4-Point Domain
VI. 1 General Discussion

In the preceding two sections, we have shown that the 4-point singularities, 
subject to the relevance conditions, are confined to the manifold given by 
the vanishing of the following 4x4 determinant:

(57)

In this section, we wish to determine what constitutes the boundary sur
faces for this singularity domain. As it stands, a*.)  generates a 4-para-
meter family of surfaces in the space of six complex variables. In principle, 
the boundaries of such a family of surfaces could be made up from any 
of the following multitude of possibilities:

( 1 ) The geometric envelope of this 4-parameter family of surfaces, which 
would correspond to a special path traversed by the a’s in the sedecimant 
«*•>().  This will be called, for convenience, the 4-77?o.s.s envelope and will 
be denoted by £’1234.
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(2) Subcases of (1) when one of the 4 a’s takes on the extreme value 
of 0, or oo, and the other 3 as, taking a path in the subspace ol the octant 
fij>0, produce a 3-mass envelope Eijk. In principle, there could be <S such 
envelopes.

(3) Still further subcases of (1) are when two of the 4 a’s take on the 
extreme values of 0, or oo, and the remaining two a’s, taking a path in the 
quadrant cq>0, produce a 2-mass envelope Eik. There could be 24 such 
envelopes.

(4) Finally, we have the simplest of all cases when 3 of the 4 a’s lake on 
the extreme values of 0, or oo, leaving the remaining one single as to vary 
along the semi-axis as>0. In all, there could be 32 such \-mass surfaces Ek.

Out of all these 65 possible candidates for the boundaries to the 4-point 
domain our present task is to eliminate the ineligible ones. Fortunately, 
we can eliminate all cases in (2)-(4) which involve any ak to be oo. We 
recall that the a’s have the physical meaning of the squares of the masses 
associated with the internal lines in the Feynman diagrams. Now if any ak 
is arbitrary large, then the thresholds for virtual production processes which 
correspond to the onsets of the associated cut-planes will be proportionally 
high. Since the 3-point boundary Fkl curves will not be relevant unless 
they have crosses over the cut beyond the threshold (Lemma 1 of Sec. V), 
and furthermore, since the relevance of the 4-point boundaries depends on 
whether or not they have intersected the relevant 3-point curves (Lemma 2), 
it is clear that the oo-portion of any ak would not give rise to any relevant 
singularity. This statement is also valid in the 3-point case, if we note that 
all the relevant portions of the curves are actually confined to the lower 
ends of the arranges (from am = 0 up to a finite value).

This criterion has the further consequence that the singularity domain 
of the 4-point proper is actually compact. Unlike the 3-point case when 
the F12 curve extends to oc in the z3-plane at the a3 = 0 end, the all ak = 0 
end is always finite in the 4-point case (apart from the trivial case when 
one of the z’s stays zero) (cf. Eq. (120) below).

Thus we shall from now on consider in cases (2)—(4) those extreme 
values of a’s to be zero only. In this way, the list of candidates for boundary 
is now radically trimmed from 65 down Io 15, viz.,

(1) 1 ^1234

(2) 4 Eijk
(3) 6 Eik
(4) 4 Ek.
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In the following, we shall first examine the questions of the various 
envelopes listed above. A priori, the question is two-fold:

(a) whether such envelopes can exist at all in the allowed all-positive 
ranges of the a’s and

(b) if they do exist under certain circumstances, then it still remains 
to be seen whether they are really part of the boundary of our domain.

It would perhaps be helpful to recall the corresponding situations for 
the ø-manifold in the 3-point case. KW have shown that the boundaries 
there are made of only the 1-mass curves (analogue of case (4) above). The 
envelope problem for the ø-manifold is a much simpler one than we shall 
encounter below. We give a concise treatment for this in Appendix B. 
The result there can be simply summarized as follows: Envelopes for the 
3-point ^-manifold can exist, but they do not lie off the R-manifolds35 (i. e. 
on the cut for each z). One concludes then that the boundaries are made 
up by the Fkl, which are simple analytic hypersurfaces.

Our results in the following subsections will show that, unlike the 3-point 
case, the envelopes in the 4-point case are non-trivial36 and in general the 
boundary of our domain will be made of pieces of (2-mass) envelopes. 
Thus we have here a fundamental difference between the 4-point domain 
and the 3-point domain, namely, the regularity domain of the 4-point func
tion in perturbation theory, /)£ert, is in general not everywhere bounded by 
analytic hypersurfaces.

Before we go into the details for each of the above cases, we shall for
mulate the envelope condition as follows:

The existence of the envelopes is purely a property that is related to the 
algebraic structure of the manifold. Consider in general the expression for 
an //(-parameter family of surfaces, /(zf; ak) = 0, i = 1, . . ., n ; k = 1, . . ., in, 
where the a’s are the parameters under consideration, which are allowed 
to vary over a real domain Am.

Definition : A point on /'is said to lie on the //(-envelope of f if, together 
with f = 0, the set of (zn-1) independent equations

admits a set of solutions such that e^m-
35 In this connection, it is very tempting to conjecture that the envelopes for the ^-mani

fold would not lie off the ø-manifolds, but this conjecture turns out to be not true.
36 In the sense that in general they do not lie on the ø-manifolds. However the 4-mass 

and the 3-mass envelopes do not contribute to the boundary (cf. Sec. VI.2 and Sec. VI.3).



Nr. 3 33

Stated in another way, the (zr? — 1 ) independent equations (58) can be 
regarded as the (m ~ 1) constraints on the zn-parameters, so that in principle 
one can always express all the other (ni - 1) parameters as, s> 1 , as functions 
of the remaining parameter, sav a±. Let

Am = «1 eAm’ as = as(al)}

which shall be referred to as the “path” for the zn-cnvelope. Note that in 
general Am will not be completely contained in Am. If, regardless of the 
configuration of the z’s,

Jm = 0,

then it is clear that the zzz-envelope in question does not exist at all. Other
wise, for AmnAm^O, we will be able to find in the a-space (i. e. Am) 
an allowed path AmC\Am such that the image of this under the mapping

zn = <7(zi, . . ., zn_i; ak): /'= 0

gives the desired /»-envelope. Since the as mix the real and imaginary 
parts of the z’s, the envelopes will evidently in general not be analytic hyper
surfaces. Equations (58) will be referred to as the envelope conditions.

VI. 2 The 4-Mass Envelope

We now proceed to apply the general equations (58) to our specific 
manifold det | | = ^(z; a) = 0 of (57). Before we do this, we shall
derive a number of identities which will be crucial for the subsequent 
discussion of the envelopes. First, we find it useful to rewrite the ^-deter
minant such that the a’s shall appear only in one column and one row 
(cf. (22a)). For instance, we have from (57):

V,(z;a) = (57 a)

Here oq is singled out. Evidently there are 3 other such forms obtained by 
suitable permutations. For convenience, let us denote by the zj'-th element 
and by its minor in (57a), while the corresponding uncurled quantities 
shall refer to those in the original from (57). Note that

Mat. Fys. Medd. Dan.Vid. Selsk. 33, no. 3. 3
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’Z'i k - Wj k 2 a!; k # 1 

= ^n-

We have already had occasion in Sec. 1V to define such quantities as

of (32). Now these have the most natural interpretation in terms

of (57a), namely:
For k = 2,3,4

1 1
Â-^1, (60)

k^ 1 , (61)

(62)

Furthermore, from (57a), one immediately sees that

since

Therefore

4 aN ÿ/i*  = ()j f()]. Å.#1
1 = 1" f li

i = 1

in which the right-hand side is independent of the a’s. Next, with the aid 
of (60), we have

4
W = y (- 1 )i + 1¥zu¥zli =

i = 1
Z (-o‘+1
k + 1

2fc + l ^1 k Qk

( sing (59), we get
1 4 av7

(B4>

for all i = 1, . . ., 4.
Identities (63) and (64) will be of great importance to us in the following 
discussions. Another set of identities which we will need here already ap-
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peared in (43)37. We are now ready to write down the envelope conditions 
for E1234 according to (58):

Â- = 1, . . ., 4

j^k (otherwise trivial).
(65)

In view of the identity (63), we can now define a set of four real numbers
yk such that on E1234

with
Qk = - 4n--yl(")

n- = 1 ; ?k = 0 •

(66)

(67)

From (43) we have on the manifold W = 0 :

Qk: = ± 4 |/ .
Therefore we have on Æ1234

(68)

(69)

In principle, the system of equations (69) together with (/z = 0 contain all 
the information there is about the 4-mass envelope. (In fact, as we shall see 
later in Sec. VI.4 for a 2-mass envelope, one has only one such equation 
which actually exhausts the envelope condition). However, a frontal attack 
on (69) for both the 4-mass and the 3-mass envelopes could lead to tremen
dous algebraic complications. We find it much more convenient to go 
back to the system of equations (64). We have for W = 0 :

2
k = 1

Now with (66), we get (/l(r)#0)

2 "•
k = 1

(76)

(71)

We emphasize that the yk's are real, so that the system of equations (71) 
is equivalent to the following set of 9 real linear algebraic equations38

37 For a proof of such identities, see Appendix D.
38 The fact that W = 0 is automatically satisfied is obvious from (72).

3*
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k = 1

4
2. (Im = (1,
k = 1

i = 1, . . ., 4, (72a)

2 <Re ^ik^Vk = °>
k = 1

i = 1, . . 4, (72 b)

4
2 n = 1 • (72c)

Since, according to (72c), the solution with all y’s being equal to zero 
is unacceptable, it follows that the determinants of the coefficients of 
any four equations taken at a time (out of the eight in (72a-b)) should 
vanish. We shall first discuss the consequences of (72a) which contain the
most powerful restrictions on £'1234:

det I Im I

0 1/1 1/2 1/3

l/i 0 1/4 1/6

1/2 1/4 0 1/5

1/3 1/6 1/5 0

(73)

Note that this determinant is equivalent to the Â-function of products of 
conjugate variables, viz:

Â(l/fc.</*')  =
- 2 1/1 f/5

J/2 ?/e - l/i f/5 - f/3 1/4

1/2 1/6 1/11/5 1/31/4

-‘^1/31/4
= 0. (73a)

From now on, we shall be more specific by keeping the other 5 z’s fixed, 
and project everything into the z6-plane. We see that the 4-mass envelope 
£1234 can only be satisfied on the two horizontal straight lines obtained by 
solving (73), viz:

l/lf/5 + l/31/4±2 j/z/if/31/41/5
/6 = - ------- - ( / 4 )

1/2
or

± |/1/21/6 = 1/11/5 ± |/1/31/4. (74a)

From (74), it follows immediately that there exists no 4-mass envelope whenever

i/ij/3i/4?/5<0- (75)

More generally, in view of (74a), we can state that the necessary condition 
for the existence of the 4-inass envelope £1234 is that the three products of 
ykyk’, k = 1,2, 3 (À? = conjugate of k, cf. Sec. 111.2) must have the same sign, or
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PiPs yzye yzy±
I yi vs I I y2 ye I I j/3 y41

(76)

which we shall refer to as the sign convention for the existence of the 4-mass 
envelope £^34.

An obvions example which satisfies this sign condition but where £4234 
is entirely irrelevant is furnished by the configuration whenever 5 z’s 
lie in the same half-plane. Then the £f234 in the 6-th variable must also lie 
in this same half-plane. As we have already mentioned in Sec. V, the ori
ginal function (15) has no singularity for all 6z’s having the same sign in 
the Imzs. Here we have a situation where the entire lines are irrelevant. 
For the other configurations39, however, the situations are much more 
complicated, as we shall see below.

So far, we have only explored the existence condition of £1234 based on 
the consequence of the imaginary part equations (72a). A brief examination 
of the real part equations (72b) will convince oneself that there is no alge
braic contradiction among the two sets of equations, so that in principle 
£1234» satisfying (76), can exist provided that all the parameters ak could 
be found to be positive at least for some configurations of the .r’s. This 
we now proceed to show.

To be specific, let the p’s be given, satisfying (76); one can explicitly 
compute the y/s from (72a) and (72c)40 (cf. Appendix C) in terms of 
the p’s. Equations (72b) may now be regarded as those governing the a/s. 
The solutions may be written as follows:

(,k = Xij7iV} + 2 XkjVj‘> À-, /,; = 1, . . ., 4 (77)
i

40 Note that the following ratios hold on E123i:
7Ï- yl- yl- yi- = y^y«: yiy3y6: UiVtVi, the right-hand side can be regarded as 0A
evaluated at all x = 0 and all a = 0 (cf. Appendix C).

with
2 = 1 ’

where the matrix X is given by

0
/ •t’l •t‘2

I1 •Ti 0 .r4 .r6
(78)

I .1’4 n0 -r5
\

•r3 •r6 .r5 0

39 The distinct configurations for which (76) is satisfied are given in Appendix C.
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Note that
V.. - 7?e I* ij |az. = 0 •

It is clear then that the configurations of the .r’s must be such that A {ak> 0/7= 0, 
or k

-^^XijyiVj + XXkjyj>{}> fo,‘ A = l,...,4. (79)
" i,j j

I he set of equations (79) which is linear and homogeneous in the six .r’s 
defines a region of the .r’s in the six-dimensional space /(6, which can be 
visualized as the intersection of the “positive sides” of the four linear mani
folds defined by setting the left-hand side of (79) equal to zero for each k. 
Let Qx denote this intersection. The fact that is non-empty is trivial 
(since the dimensionality of the variables (.r’s) exceeds the number of 
constraints by two). It may be of some interest to note the subset of 
for which the ak's are positive definite (i. e., regardless of the yk’s). For this 
we may rewrite (77) in the following matrix notation:

a*  = -|yU)2LU)/fc), Å = 1, . . 4 (89)

in which y(k) denotes a 3x] column

of the yk, e.g. , etc.. is
the .r’s: \yj

matrix ol the y;-’s with the deletion 

a set of 3x3 symmetric matrices in
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Note that41
det Lw = 2/l(.r), for Å = l,...,4. (81)

Now with the afc’s regarded as the quadratic forms in the yk's in (80), a 
standard procedure of diagonalization immediately shows that the subset 
a)x of &x for which the a/s are positive definite is given by

I Å- = 1, .... 4]
.r: .r >0, zfc(.r) < 0, A (.r) < 0, . (82)

I // = 1, . . ., 61

It is trivial to check that a>x is non-empty. Thus 0 # <dx Geometrically, 
- Å(Zj-, Xj, xk) = 16 times the squares of the area of the triangle with the 

Figure 12. Projection of the 2(.r)-cone.

sides |/.rf, [Xj, and -zl(.r) = 144 times the square of the volume of 
the tetrahedron formed by the six edges with lengths j/x„. In a 3-dimensional 
space, the region z(.r)<() is the interior of a cone42 (tangent to all coordinate 
planes) within the octant xi,xJ,xk>0 (cf. Fig. 12 above as projection). 
Now in the 6-dimensional space, one first goes to the sexaginta-quadranl 
x/l>0, then takes the intersection of 4 sets of the 2-cones in thesub-3-spaces, 
and finally inscribes the surface of zl(.x’) = 0 (which will be tangent to 
all four Âfc-cones). (No attempt is made to draw such a picture here, not 
even the projection).

This establishes that with suitably given z’s (Im z's satisfying (76), 
Re z's satisfying (79), and in particular (82)), the four parameters ak can 
indeed be found simultaneously positive on the 4-mass envelope ^?i234, 
and with this we conclude the existence of the 4-mass envelope.

41 We note in passing that the structures of the L^-matrices can be easily understood 
with the aid of the tetrahedron T of Sec. III.2. The diagonal elements in L'l(> correspond to 
those edges emerging from the /c-th vertex of Fig. 3, and the off-diagonal elements to the edges 
conjugate to this vertex (i. e. the 7c-th face).

42 A beautiful picture of such Â-cone appeared in a recent paper of A. S. Wightman and 
H. Epstein, Annals of Phys. 11, 201 (1960), in an entirely different context.
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We now proceed to discuss the relevance of £1234- To be specific, con
sider yk, . . . ., y5 given according to (76), compute the y6 from (74) (i. e. 
we get two horizontal lines £’£234 in the z6-plane). From these 6 y’s, compute 
the yk’s from (72a). Now given more or less arbitrary .r1, ...,.r5, the li
nearity of (77) implies that ak has one zero only on each of the £1234- A

Figure 13. Straight-line segment in z8-plane as the 4-mass envelope.

typical case is illustrated in Fig. 13. We use the symbol ()-> to show the di
rection in which that particular is positive. Hereafter, £4234 shall properly 
denote the allowed region of existence of the 4-mass envelope on which 
the intersection of all ufc>() has been taken (e. g., the segment between 
a2 = 0 and a1 = 0 in Fig. 13). By definition, £1234 is contained in of
(79); however, £1234 may he empty. The case when li1234 n 0
has some pertinent features which we leave to the Appendix C. In general 
there are the following possibilities:

(a) £1234 is either empty for a particular configuration of the z’s or is entirely 
contained inside the 3-point singularity domain: in such cases, the 4-mass 
envelopes are entirely irrelevant.
O>) £1234 is unbounded at one end which lies outside the 3-point singularity 
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domain: In this case (imagine all <-0 pointing to the left in Fig. 13), it is 
also easy to dispose of by observing that the extreme far end of E1234 (which 
corresponds to all ak-+oo) is never relevant. Since the relevance of E1234 
does not change unless it has an intersection; otherwise, the case is reduced 
to (c) below.
(c) £1234 is finite and partly lies outside the 3-point singularity domain 
(Figs. 13, 24, 25). This is the only outstanding situation of the 4-mass en
velope which needs further discussion. It is clear that the path in the a-space 
corresponding to such a finite £1234 is a straight-line segment bounded by 
two 3-dimensional sub-spaces. As will be shown in Sec. VI.3, at the end 
<'m = U °f £1234 comes the 3-mass envelope k I m). Stated
otherwise, the fact that £'1234 suddenly comes to a stop must mean that 
there is another curve which would also pass through that point. For this, 
we must defer the remaining discussion of the role of the 4-mass envelope 
until we have treated the 3-mass envelopes in the next sub-section.

VI. 3 The 3-Mass Envelope

We have seen that the restrictions of the 4-mass envelope are so strong 
that one gets only rather trivial situations where £4234 is confined to a straight- 
line segment in the z-plane. The envelope condition (58) or (66) is relaxed 
when one goes from an m-envelope to an (m 1)-envelope; since, by de
finition, one of the parameters now takes on the fixed extreme value 0, 
the corresponding restriction of is then to be removed. We shall
now sketch the necessary modification for the treatment of the 3-mass 
envelopes Ejkl. To be specific, let us consider E123, the 3-mass envelope 
formed by a special path in the (a1? a2, a3) 3-space. For this, we set once 
for all, cr4 = 0, in the expression for ^(z; a). Strictly speaking, ()4 which 
was defined as dlPjda^ is now meaningless, however, as a shorthand no
tation, we shall still use it as

which, as stated above, is no longer restricted by the reality condition of 
(66). However, the identities (70) still hold with u4 = 0. We may now de
fine on E123 a set of 5 real ys, s = 1, . . ., 5 such that
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and

Qj = //'(-; "). ,/ = i....,3
3

G(z;n) = 2 Qj= -4zl(z)-Q4;
J = 1

j= 1

3

(>4 = (?4 + ' /s) • <;(~; «)•

(S3)

Substituting (S3) into (70) and dividing by G(c; a), we get, after taking 
the imaginary and the real parts:

4
2? <Zm¥/a)n + (/?c = 0 ; (S4a)

a- - i

4
A n-<Zw V/j4) ?5 = 0 ; for '=1..............k (84 b)
k = 1

Now taking the fourth equation of (84 b) together with (84a), we have

where

with

5

= ()> s = i,.... 5
t = i

(S3)

(86)

(87)

where the superscript (4) is a reminder of n4 0. Note that this column 
corresponds to the edges emerging from the 4-th vertex of the tetrahedron 7’ 
of Fig. 3.

Since the det | U | must vanish for non-trivial solutions of the ys’s, we have

det I (’I = -5t(4)7’ l\t(4) = 0,
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where V is a symmetric 3x3 singular matrix involving the y's alone:

I 'ly^y*
V = 7s <71 7s - .73 .74 - .72 .76 )

\ 76 (.72.76 -.73 74 -.7175)

75(7175 -7374 -72.76)

‘■^72 73.75

73(73.74-71.75-7 7 )

7e (727e-717s-73 74) \

73(7374 - 7175 -7276) •
'-7173.7e '

Eq. (88) can be easily solved. The result is

ytVo.^4) = 0, for z=l, 2, 3, 
i

(90)

where H’ is also a 3x3 singular matrix (but in general unsymmetric):

/ Vu F12T |/2(7Jfc7r) vi3 ±| 2(yfcyr)^

(V = l V21 ± |/A(yfcyr)
* 22 F23T |/ ^(7fc7r) (91)

UV j/Åfy^y^) V32± J Â(yfc yr) V /
* 33

in which Å(ykyk') is the determinant (73a) which vanishes on the 4-mass 
envelope.

From (91), it immediately follows that the 3-mass envelopes cannot exist if

This implies that
*(7*7*')  < <•>. (92)

(a) If the y’s satisfy the sign convention (76), then the 3-mass envelopes can 
only lie outside the region bounded by the two lines of (74). In particular, 
(92) implies that Ejkl can never cross over E12m (cf. Fig. 15).
(b) On the other hand, if the y’s do not obey the sign convention (76), 
then Â(yÂ.yfc<)>0 always, and Ejkl may exist while E’1234 cannot.

For case (a), i. e. when E'1234 exists, we assert that Ejkl intersects with 
h'1234 at the point which corresponds to the remaining parameter am = 0 
on E1234. This is intuitively clear since, at the point (a*,  ak, a*\  am = 0) 
on E1234, we are in the 3-space of (a^, ak, af) in which lies a path for EJkl\ 
now this point must actually lie on the path for E^kl, since the condition 
for £’1234 is sufficient for that of Ejkl. This statement can be explicitly veri
fied by elementary computation. Considering the case o4 = 0, we note that 
the following ratios hold for the ys’s on E123:

(89)
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/i: ?'2 ; y s •• y 4 : y 5: 51 ( Wi y 5 - y 2 y& - y 3 y 4 ) ± I( yk j/r)l

:2y2j/3y5:y3

■yz (yzy^ yiy^- ysiu) ±
^34) ?73 + ^14) ?/5

44).V3- (̂i4)/75
• |/*  (ykyk’)

2 y 2 y 3 y 5

(93)

li is clear then that, at F1234 0 E123, we have y5 = 0. Then the remaining four 
y’s will have exactly the same ratio as those in the case of the 4-mass envelope' 
(cf. footnote 40, and Appendix C), and the solution to the 3-mass envelope 
will coincide with the solution to the 4-mass envelope £’1234 at o4 = 0 on 
the latter. 'Phis establishes our above statement that H £1234 0.

We now return to the discussion of the situation (c) of £1234 in the last 
sub-section, in which E1234 has a finite strip lying outside the relevant 3-point 

Figure 14. Inadmissible corners formed by the intersection between the 3-mass and the 4-mass 
envelopes.

singularity domain (cf. Fig. 13). The end-point A of A’1234 corresponds to 
one particular am = 0 on F1234, say in = 4. As we have just seen that A\23 
can only lie on one side of E1234 (e. g., below the segment AB in the z6-plane, 
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cf. Fig. 14 above) and that E123 actually touches this end-point .4. Let us 
imagine that E123 4S depicted by some curve AN in the z6-plane (Fig. 14). 
The exact shape of F123 will not be important to us (cf. remark in con
nection with Fig. 15 below). Our discussion up to this point does not ex- 
elude the possibility that the shaded region in Fig. 14 might contain the 
4-point singularity. Bid this we now proceed to show as inadmissible.

43 A standard theorem is the well-known “Kantensatz”. See, e. g., Behnke-Thullen, 
loc. cit., p. 52; KW’s Sec. VI; and H. Kneser, Math. Ann. 106, 656 (1932). Although, strictly 
speaking, this theorem has only been proved for corners formed by analytic surfaces, while 
in our present case we are presumably dealing with the non-analytic surfaces, one can in the 
neighborhood of such corners construct tangential analytic surfaces so that the shaving of the 
corner received from the “Kantensatz” on the enveloping analytic surfaces will automatically 
affect our present corner proper. I would like to thank both Professors Jost and Kallen for 
comments on this point.

Figure 15. Admissible (but non-occurring) corners.

If this were really the case, the intersections of with F1234 would be of 
such a kind that we had a corner in our domain. Since, as is characteristic 
of the theory of several complex variables, such corners are vulnerable to 
further analytic continuation43, they cannot be part of the actual boundary 
of a natural domain of holomorphy. Note that if it were possible for Eijk 
to cross over the 4-mass envelope like in the situation shown in Fig. 15, then 
this would in principle be admissible (since, in this case, the regularity 
domain would be the intersection of the two rather than the union as in 
Fig. 14). Bid our discussion of the 3-mass envelopes definitely excludes 
the possibility of such double intersections between Eijk and E1234. This 
leaves the only alternative of the corner as shown in Fig. 14, which one can 
reject as unacceptable for the boundary of our domain. Thus one concludes 
that the 4-mass envelope and the 3-mass envelopes do not contribute to 
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the boundary44. In eases when the shaded region of Fig. 14 contains actual 
singularities, there must be another surface passing through and cover up 
this corner of Fig. 14. For this, we must go over to the treatment of the 
2-mass envelopes.

44 The role of the 3-mass envelopes in the case when the 4-mass envelope does not exist 
will not be discussed here. In view of the above feature for m = 4 that the (m— l)-envelope 
can only lie on one side of the m-envelope (i. e. meet at most tangentially), which will be seen 
later (Lemma 3) to be also valid for m = 3, one feels more confident that the 2-mass envelopes 
are actually more important even in this case.

VI. 4 The 2-Mass Envelope

As already mentioned in Sec. VI.3, the farther we go down to the enve
lopes of lower hierarchy, the less restrictions there are on the Q/s. We shall 
first establish the intersection of the 2-mass envelope Eik with the 3-mass 
envelope Eijk. The method is quite analogous Io the previous treatment of 
the 3-mass envelope.

We introduce a set of 6 real parameters For specificity, let us 
set n4 = (z2 = an(l consider E13 (i.e. the 2-mass envelope formed by a 
path in the quadrant o1>(), o3>0). As before, the quantities ()4, ()2 shall 
now be understood to stand for

Since the envelope condition for E13 requires that

we may set
Qi = Vi h ( - ; (i ), z = 1, 3

71 + ?3 = 1

h(z-, a)--4Z(r)-Q2-Q4

<?2 = (?2 + 'Ze) ‘ h(z> <l)

Q4 = (y4 + z>5)-^("; «)•

(95)

Substituting (95) into (70) and dividing by /i(r; a), we get, after taking 
the imaginary and the real parts:
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4

A (Irn ^ik)yk + (Re ^2)76 + <Re ^4)75 = °; (96a)
k = 1

4
A (^ *//a)yjt-(/zw¥Zf2)Z6-(/>w ^4)75 = (I. (96b)

45 See Appendix D.

k = 1

Combining the second and the fourth equations of (96b) with 
have :

6
fiv7v — 6, /z — 1, . . ., 6

V = 1

(96a), we

(97)

where (Tflv) is a 6x6 symmetric matrix:

where

(98)

(99)

Let T— det | |. Now making use of the Jacobi theorem45 on the ex
pansion of the determinant in terms of the minors, we have

7’ =
y55 7’66 _ / \2

^(Ukl/k')
(100)

where T^v = minor of 7’^r, being 5x5 determinants.
One immediately recognizes that 7’55 and 7’66 are precisely the deter

minants of the type (whose matrix is defined in (86)) for the 3-mass enve
lopes E123 (at a2 = 0) and E134 (at a4 = 0) respectively. From this, the inter
section of the 2-mass envelope with the 3-mass envelope is quite obvious. 
Consider, e. g., E13 n E123. Since T must vanish on E13, and 7’55 vanishes 
on F123, and consequently on E13 A F123, we have
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and
?6 = 0 

T55 = O. (101)

A straightforward computation with the aid of (90) will reveal that (101) 
reduces to the second equation of (96b) with y6 = 0 and yr, . . ., y5 expressed

Figure 16. Typical paths for the various envelopes in the «-space.

by those on the 3-mass envelope E123 (cf. (93)). this means that (101) 
is automatically satisfied on E13 fl £’123; hence there is no internal incon
sistency. This shows that in general Eik A Eijk 0.

This is also intuitively clear since the path C\;Ä. in the octant of all posi
tive a’s corresponding to the relevant portion of Eijk is in general bounded 
by the coordinate 2-planes am = 0, m = i, j, or k. Since the envelope con
dition for Etjk is sufficient for the end-points of Cijk (in the finite case) 
must then necessarily lie on the path, say, Cifc for Eik. This situation is 
depicted in Fig. 16, showing that the path of one of the (in - 1 )-envelopes 
passes through one of the end-points of the path for the m-envelope, m = 2, 3, 4. 
One further consequence for Eik A is the following:

From (100), we have, since 7’= 0 on El3,

(102) can only be satisfied when 7’55 and 7’66 have the same sign. In the 
case when 7i134 and E'123 are distinct, we have in the neighborhood of El3 A 
7i123, 7155*0;  while T66 (i. e. the determinant corresponding to 7T134) will 
essentially remain unchanged in sign. Thus (102) immediately implies that 
7’55 cannot change its sign in the neighborhood of E13 A El23, i. e. E13 can
not cross over E123. The same statement holds for E13i.



Nr. 3 49

Collecting with this our previous result for Eijk D CJ1234, we have estab
lished the cases in = 3, 4 of the following:

Lemma 3: The intersection between the envelopes and Efm\ for
77? = 2, 3, 4,

(1) is non-empty,
(2) occurs at the ends of E^m\ and
(3) is “tangential”.

Remark: (a) The subscript f is used to denote the case when the path 
for the 7n-envelope is finite (i. e. C(m) is bounded by the sub-(m - 1 ^spa
ces). Otherwise, in the case when is unbounded, one can always show 
that the corresponding envelopes are irrelevant.

(b) The term “tangential” is understood as saying that E^"1^ can only 
lie on one side of E^ (i. e. cannot cross over E^ at the intersection40, 
in the z-space).

(c) Lemma 3 says nothing about the relationship between an jA™-2) 
and an E^m\ Thus, for instance, a 2-mass envelope can cross over the 4-mass 
envelope to swallow the corner of Fig. 15 (cf. Fig. 18 below).

F’igure 17. Path for the 2-mass envelope El3.

(d) Whether E^ will always contain the actual singularity is not fully 
settled here. This is true, however, in the 3-point case: while the E^ and 
Ef2\ although not contributing to the boundary, do lie inside the sin-

46 This feature seems to be also valid for the envelopes in the primitive domain of 
the 4-point function in the axiomatic approach. (Private communication from Professor 
G. Kâllén).

Mat. Fys. Medd. Dan.Vid.Selsk. 83, no. 3. 4
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gularity domain (on the cut)47. However, in the present case, we have one 
explicit example (cf. Fig. 24) where the corner formed by £y4) with 
is actually singular. (Of course, the case when is entirely contained 
inside the 3-point singularity domain is trivial).

It remains to say a few words about the case m = 2 in Lemma 3 which 
involves the 1-mass envelopes (strictly speaking, they are not envelopes).

One can, of course, explicitly show their intersections with the 2-mass enve
lopes in a perfectly analogous manner as was done above for A E^ ; 
we shall, however, omit this elementary computation here. Intuitively, it 
is clear in the quadrant rq>0, ak>0, since a finite path for Eik must 
necessarily terminate on the semi-axes. A typical situation is shown in 
Fig. 17 in which C13 is bounded by the same axis. The image in the z6- 
plane is shown in Fig. 18 where the 2-mass envelope E13 rides on top of 
the one-mass surface Ex, and the singularity domain is the union of the 
regions bounded by these two.

For completeness, we mention that, in the 3-point case, there occurs
47 See Appendix B.
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a peculiar situation where £(1) Pl A’(2'0 D. This does not happen in 
general for the 4-point case. The only exception for Fl 7i(m_1) D

to occur would be when there are coincident zeros of the a’s on 
e. g. Fig. 19. However, the situation in the 3-point case is actually 

of a slightly different nature than that of Fig. 19. There, the image of the 
2-mass envelope in the z-plane happens to be a constant, so that 7£12 (the 
analogue of which in the 4-point case are the 3-rnass envelopes) actually 
shrinks to a point which serves as the junction between the 1-mass F'- 
curves and the 3-mass envelope there48.

The rest of this sub-section is devoted to the discussion of the connection

Figure 19. Multiple intersections among the envelopes in the 4-point case (Non-occurrence of).

of the 2-mass envelopes with the boundaries of the 3-point singularity 
domain, Fkl- curves, and the equations for the former.

The conditions for the 2-mass envelopes are all contained in equations 
of type (96). However, for the 2-mass envelope, it is actually more con
venient to take (94) together with the identities (68), (i. e. (69)). Thus, 
we have, for instance, on 7:13,

(103)

(104)

48 See Appendix B.
4*



52 Nr. 3

Figure 20. Allowed region for the 2-mass envelope: (outside the solid-line shaded region) when 
the two sets of F'-curves are in the same half-plane.

(105a)

(105 b)

are the points on the F45 and F13, respectively. Equation (104) allows a 
simple visualization of the location of the 2-mass envelope. Consider a 
point (a*,  a3) on C13, then in the z6-plane one can locate two points z6(a*),  
1 = 1,3, on F13 and F45, respectively, according to (105). One sees then that 
the condition (104) for E13 at («*)  can only be satisfied on the line L13 pas
sing through z6(a*),  z6(a3), excluding the segment between them. In other 
words, the 2-mass envelopes cannot exist in the region bounded by the 
two F'-curves, such as the shaded regions in Figs. 20 and 21. The exact 
image of the point (af, in the z6-plane is given by the intersection of
this line C13 with the ’F-manifold, which now reads for a2 = u4 = 0:

(~1 öl)(~5 «3) + (”3 al) ( "4 ~ (l3) i - I ala3(z6 ~ ’fj1)) (~6 “ ~ß3))
"e =------------------------------------ ;---------------;-------------------------- • (106)

(-2 ~ «1 - a3>
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Figure 21. Allowed region for the 2-mass envelope: (outside the shaded region) where the two 
sets of F'-curves are in the opposite half-plane.

The elimination of z6 from (104) and (106) is straightforward, and the re
sulting equation reads:

0 — cr2 {«1 n2 a3 a2 (;x + z3 z4 z5 + z2)

— Cq [zjZj + Z3Z4- -1 "3 - "2 (~1 + ’3)] + a3zlz3 ~ Z2Z1Z3 / 

+ 2 <r{ a? a3 - a4 al - rq a3 (z1 + z3-z4- z5) - ar z4 z5 + a3 zr z3 }
!a3 ~ °3 al ~ °3 (z4 + "5 “ Z1 ~ Z3 + -2) 

(,3 [zlz5 + Z3Z4 Z4Z5 Z2 (Z4 + zô)J + fllZ4Z5 Z2Z4Z5/

(107)

Note that this (‘([nation is symmetric under the simultaneous permutation of 

and the variation thereof (cf. Sec. III.2). The real and imaginary parts of 
(107) give two equations for the 3 parameters cq, a3, and cr. In principle, 
from these one is able to express two of the parameters in terms of the 
remaining one, say cr; thus, for fixed zlf . . ., z5, one gets:
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«i = «i (<?).

«3 = "3O)’

(108) then defines the path C13 when taken in the positive quadrant a1>0, 
a3>0. With this substituted into the equation resulting by solving for -6 
from (106), one gets the final equation for £’13 in the r6-lane, which for all 
other z’s being fixed, reads

-6 = -6(^)- (109)

In actual computation, however, the solutions of (108) from (107) involve 
great computational labor49. The other five Ejk envelopes are, fortunately, 
slightly less complicated. But we shall not go into all this.

Since, in the solutions (108) for the ct’s, the Re z’s and the Im z’s are 
well mixed, it is clear that (109) no longer gives an equation for an analytic 
hypersurface. Since, as we shall show in Sec. VI.5, the 1-mass surfaces 
(which are analytic) do not in general constitute the whole boundary to 
the 4-point domain, and since we have shown that in general the higher 
envelopes lead to the pathological situations shown in Fig. 14, the process 
of successive elimination forces the 2-mass envelopes to be the only remain
ing eligible candidates for our boundary. And indeed for one explicit con
figuration (cf. Fig. 24 in Sec. VI.5) we have shown that the 2-mass enve
lope does come in.

With this we conclude that non-analytic hypersurfaces do serve as part 
of the boundary to the 4-point domain in perturbation theory. In the final 
sub-section, we shall study those 1-mass surfaces50 Ek and shall illustrate 
in some typical configurations the explicit behavior of Ek which indicates 
the presence of the envelopes.

VI. 5 The 1-Mass Surfaces

The 1-mass surfaces, as compared with the various envelopes we have 
discussed above, are much simpler objects, as they are simply the images 
of the four coordinate semi-axes in the «-space. Applying the technique of 
the determinant expansion of Appendix 1), we have the following identity:

49 With cr as a running parameter, one gets usually a 6th degree algebraic equation in
volving one final a,.

50 Chronologically, these 1-mass curves were investigated first. From these, we can easily 
convince ourselves that they do not give the whole boundary. One is then forced to undertake 
a lengthy treatment of the envelope problem which is summarized above.
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40204-(ï'24)2
-b2 (HO)

Therefore, on the ^-manifold, we get

= ±2 |/02 04. (Hl)
Note that

24 Id*/*
2 dz6' (112)

Identity (110) is the proper generalization of (45) which holds in the 3-point 
case. In terms of z6, (111) is equivalent to

(113)

For completeness, we mention that the analogue of KW (A. 48c) reads in 
the 4-point case as follows: On the ^-manifold

±

± y ^3

Ä2
(114a)

(114 b)

and the permutation thereof. (114) follows directly from (113), or equiva
lently also from (70) with the aid of (68).

The expressions for the 1-mass surfaces Ek (i. e. ak 0, for one k, 
all other a’s being zero), which immediately follow from (113) by setting 
to zero 3 a’s at a time, are summarized as follows:

For E1: ax > 0 :

For E3 : a3 > 0 :

JU
(Z2 - ai)2

(|Z "4 W4 ± |/~5 W5)2,

- --- ^-^2 • (f/z! Wi ± |/Z3 W3)2,
(Z2 - a3)2

(115)

(116)
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where the zz>’s are defined as
Z2Z4

+ «3 + -----
«3

(H7a)

' «3
Z2 Z5

Ö3
(H7b)

’ «1
Z1Z2

ai
(H7c)

+ «1
Z2Z3

«1
(117d)

which vanish on the appropriate F^-curves.

For E2 : a2 > 0 :

r6 = — [ziZ5 + z3z4 + n2(r2 “ ~3 "5) ± I "3 "5 l°2 * n2(~2 ~ "1 _ "4) + ’l-jl- (1 1 
Z2

For E4: rz4>0:

z6 = — ["1 "5 + ~3 "4 + f/4("2 ~ ^1 _ "4) ± 2|/ r!Z4 [rz4 + <74(z2 - Z3 - z5) + Z3Z5]]. (119)
Z2

With zlf . . ., z5 fixed, the above 4 curves Ek in the z6-plane start from a 
common point G which corresponds to all oi = 0 (for a given choice of 
the sign in front of the square root, cf. remark following (124) below)

with

The 4 curves Ek start from G with the following slopes:

'V<lk'G z2 k 21Z3Z4z5

where 0^o) is evaluated at all cz’s being zero, viz:

(120)

(121)

(122)
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On account of the identities (63) and (68), we have

y(—i -T (123)
k = l\dcik lG "2J/~1~3"4^5

One may note the analogy between the ratios among these slopes and those 
among the y’s on the 4-mass envelope (cf. footnote 40) if one replaces all 
the z’s by Im z’s.

Next we come to the asymptotic behavior of the Ek. For and E3 in 
the z6-plane, we have respectively (for other as being zero or finite)

lim z6 = ()/z4 ± \/z5)2 (124 a)
«i->00
lim z6 = (|/zx ± |/z3)2. (124b)

as->*

In other words, Er and E3 terminate at finite points in the z6-plane corre
sponding to Â1(r4, z5, z6) = 0 and Â3(z1, z3, z6) = 0, respectively. On the other 
hand, E2 and F4 extend to infinity in the z6-plane as a2->oo and a4->oo, 
with the following slopes:

"6(n2 5z£ 6) —-— [z2 — z3 — z5 ± 2 |/z3z5] a2 (124c)«2 00 Z2

z6(a4^0) —[;2 -^4±2|/z1z4] n4. (124d)
®<->“ Z2

We now proceed to investigate the relevance problem51 of these 1-mass cur
ves. First of all, the sign in front of the root in equations (115)—(119) should be 
chosen in such away that one gets an enhancement rather than a cancellation 
among the terms. The latter is entirely irrelevant. This situation is also true 
for the lower order singularity manifolds. We recall that, in the 2-point case, 
the relevant cuts start from zk = (j/am + [/an)2, but not from (|/uOT - |/ara)2. 
In the 3-point case, the /"'-curves are gotten by also choosing the sign which 
would add up terms (while the opposite sign gives exactly zero there). 
Of course, for complex quantities under the square roots, the sign is meaning
ful only with a suitable convention of the branches, which we shall take 
as the one with the positive imaginary part.

51 To be precise, in view of the fact that part of the singular portion of may be over
riden by a 2-mass envelope (cf. Fig. 24), we are here seeking only the relevant portion of Ek 
in the following sense:

(i) it has actual singularities, and
(ii) it lies outside the 3-point singularity domain (but not necessarily as the actual 4-point 

boundary).
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It is a consequence of Lemma 2 that Ek has a relevant portion if F^ 
intersects twice with the relevant portions of the dominating F'-curves and if 
the bubble formed by such double intersections lies outside the 3-point 
singularity domain. The condition for such double intersections between 
Ek and F' can in principle be stated algebraically as follows: Consider, for 
example, EjA/7^. After rewriting (115) for E& in the form

and with the relevant portion of F45 given by 

-4 ~5

(126)

the problem is to lind the condition on the configuration of the other 5 
c’s such that the system of equations (125), (126) admits at least two so
lutions for at (or g) in their respectively allowed ranges, as indicated above. 
This can be done by brute force, but the result is so complicated that we 
do not wish to display it here. The conditions are obviously dependent on the 
moduli (as well as the arguments) of the 5 z’s, and we have not been able 
to deduce from it a concise statement about the desired configuration. 
(However, cf. (129)).

Instead, we shall in the following classify the configurations of the 
5 z’s by the location of the starting point G of Ek. There are three distinct 
cases :

Case (1); G lies outside the 3-point singularity domain;
Case (2): G lies deep inside the 3-point singularity domain;
Case (3): G lies on or slightly inside the 3-point singularity boundary.

From our studies of the Ek curves, we find that the first two cases do not 
yield anything of interest. They correspond to the situations where Ek has 
no intersection or non-relevant intersections with the F' curves. Therefore 
we shall concentrate on case (3) above, which also has an intuitively appeal
ing feature for the desired intersections between the Ek and the dominant 
F'-curves.

The condition is then to require that at least one of the slopes for Ek 
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at G given by (121) has an intersection with the dominant F' curves. For 
the case when the latter are hyperbolas (i. e. 0 < arg zk + arg zt < ti), this 
implies that52

arg z& +arg z,< arg +arg arge, z = l, ...,4. (127)

Condition (127), however, like the solutions to (125) and (126), is again 
dependent on the lengths of the z’s in addition to their arguments.

It is clear that (127) is not sufficient to guarantee a double intersection 
even when G is chosen to lie on or slightly inside the F'-curves. However, 
only in such cases will the 1-mass curves Ek provide a useful hint as to 
how the 2-mass envelopes would come in. We illustrate this statement with 
the following 4 pictures: Fig. (22a) and Fig. (22b) show situations where 
the Eks have the wrong slopes, and are irrelevant. In such cases, the 
envelopes are also irrelevant. Fig. (22c) shows a situation when one E- 
comes out of the F'-region, while one other Ek stays inside. Although neither 
makes double intersections with F' (hence neither is relevant per .se), the 
corresponding 2-mass envelope F^ may very well form a bubble with F', 
which will serve as the 4-point boundary. Finally, in Fig. (22d), one sees 
a situation where one F, does make a bubble with F' (the bubble can be 
shown to be relevant). On the other hand, another L) also conies out of F', 
which by itself gives no contribution to the boundary; however, their 2-mass 
envelope F^ may enlarge the bubble formed previously by F, alone. This 
last phenomenon is what we have called the “overriding” of the relevant 
portion of 1-mass curves by a 2-mass envelope.

We shall now study some explicit examples. Let us first fix, for the sake 
of convenience, two (out of three in all) pairs of the conjugate variables 
(in the sense of Sec. 11.2), say zlf z3, z4, z5. Ideally one would like to plot 
simultaneously in the product planes of the remaining pair of conjugate 
variables (i. e. e2 and "g)> but for simplicity and practicality, we shall only 
plot in the e6-plane (i. e. a 2-dimensional slice in the space of 12 dimensions) 
with suitable reference to the location of its conjugate variable z2. The 
restriction on z2 is as follows:

82 The 3-point analogy of this condition is obvious: The relevance condition of the Fp 
curve itself, znt = z/; +zi-r-z^zi/r, can also be easily discussed by investigating the slope 
of the curve (actually the asymptote here for the hyperbola) at r = 0 (i. e. the analogue of the 
point G). Since one knows that the whole piece of F/^i changes its relevance at its intersection 
with the cut along the positive xm-axis, the relevance condition of Fki is to require that 
the slope at r = 0 should at least intersect with this xm cut, i. e., n < arg(-z/cz/) < 2zr, from 
which follows immediately the desired condition of the configuration: 0 < arg Zk+ arg zi < n.
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Figure 22b. Starting slopes of the 1-mass curves: (Irrelevant).
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Figure 22c. Starting slopes of the 1-mass curves: (Irrelevant 1-mass curves, but relevant 2-mass 
envelopes).

Figure 22d. Starting slopes of the 1-mass curves: (Relevant 1-mass curve and further 2-mass 
envelopes).
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(1) c2 shall not lie inside the relevant portions of the 
3-point singularity manifolds 02 = 0 and 04 = 0, and

(2) r2 shall be such that G of (120) lies on or slightly inside 
the dominating boundaries to the manifolds (/\ = 0 and 03 = 0 
in the r6-plane.

••• (128)

Clearly there exists a limiting case of (120) when arg 40) and arg r2 
approach respectively those of the asymptotes of the two dominating F' 
for r6 and z2. This implies, after a simple computation, the following ne
cessary condition for the relevance of Ek for the case when Im zit i = 1,3, 4, 5, 
have the same sign53

2 Max { arg z{] < arg zt, z = l,3,4,5.
i i

(129)

In the following, we shall coniine ourselves to the consideration of those 
configurations for which the four sets of the 3-point ø^.-manifolds are si
multaneously relevant. (A few remarks are, however, made near the end 
of the text, regarding the degenerate cases, cf. Lemma 4 of Sec. VI.6). This 
means that, if one is looking at the triplet (ijk) in the zfc-plane, one requires 
that the following 3-point conditions are to be satisfied:

(a) 0 <arg + argZy < ti, if 17/17/X), J7/>0. (130a)

(b) 3.'T<argri + argr;<47r, if yfy;> 0, yf < 0 . (130b)

(c) argz^>7t + arg^, if 17/17/<0, y^O. (130c)

One recalls that the configurations (a) and (b) yield hyperbolas and the 
configuration (c) gives a bubble in the r^-plane.

There are /me distinct configurations in the distribution of the 4 zf’s, 
z=l,...,4. The first four cases correspond to yiy3y4y5>0 (which imply 
the existence of the 4-mass envelope) and the remaining case is for yiy3y4y5 < 0 
(where 7l1234 does not exist).

(A) All 4 I p : ( Two sets of hyperbolas each for r6 and z2).

In this case, we have:

17i?73f/4?75>0: 17/>0. (131)

53 For other configurations with mixed signs of Im zt, condition (129) can be easily modified 
by replacing some appropriate arg zm by 2?r-arg zm (Cf., e. g., Eq. (136)).
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The 3-point boundaries are Tw U F'^ in the z6-plane; and F'u U F25 in the 
r2-plane. (When there is no intersection among the two F' curves, one of 
the ø-manifolds will be imbedded in the other, and the dominating F' curve 
is the one which corresponds to the smaller sum of the arguments. Otherwise, 
one has to take both of them into account.) The 3-point conditions are 
(130a) taken four times, or

Figure 23. 1-mass curves in z8-plane for the configuration (A): All 4 up (Two sets of hyperbolas 
each for z8 and z2).

i j and
arg^ + arg^<7i, for z, j = 1,3,4, 5, : (132)

z# conjugate of /.
The 4-point condition (129) reads:

2 Max (arg rf) < arg zt < 2tt, z-1,3, 4, 5. (133)
i i

In plotting in the r6-plane, z2 is Io be chosen according to (128). A typical 
situation for this case is shown in Fig. 23.

(B) Two Up and Two Down: (hyperbolas for z6: bubbles for z2).

In this and the immediate next configurations, conjugate variables lie 
in the opposite half-planes. Here,

yiy3!/4'/5>0: '/i.y4<()- (134)
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The 3-point boundaries are F43 U /^5 in the r6-plane; and F23 F25 F42
F24 in the r2-plane. 1 he 3-point conditions are explicitly (consider the 
case yx >0)

()<arg z1 + argc3<7t

( 1 35)

arg ;5> 7T + arg ;3.

The 4-point condition (129) now takes the modified form

(i) 2 Max { arg arg c,- < 5 .-7 (136a)
if

Max { arg ?!, arg -3 } < 2 n - Min { arg z4, arg -5 )
or

(ii) 3% < arg zt < 4 zt + 2 Min { arg r,;} < 5 tt (136b)
if

Max {arg z4, arg r3} > 2 - Min { arg z4, arg z5 ) .

A typical case is shown in Fig. 24.

Note: Figure 24 gives a very interesting example: Fx makes a bubble with 
F13 which can be shown to be singular. On the other hand, F3 lies outside, 
and by itself is not relevant. Thus we have the situation shown in Fig. 22 d. 
Now, if one takes the path a4 = tz3 in the positive (ax, a3)-quadrant (<z2 = <z4 = 0), 
one finds that its image in the z6-plane makes another bubble with F13, 
which is also singular, but not contained by Fx. This shows definitely that

(a) 'Fhe 1-niass surfaces Ek do not in general give the whole boundary of 
/>£ert, and
(b) Envelopes actually exist.

Another curve, which corresponds to the path <zx = a2 = a3 = <z4 in the 
positive sediciment, is also plotted in Fig. 24. However, it is not relevant 
in this case.

A plot of one of the simplest envelopes in the "6-plane, namely F24, 
is also made, but in this particular ease, it is completely submerged inside 
the 3-point singularity domain.

Finally the 4-mass envelope FX234 is finite in this case, being bounded 
by a2 = 0 and ax = 0. This is exactly the situation illustrated in Fig. 13.
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Figure 24. 1-mass curves in z8-plane for the configuration (B): Two up and two down (hyper
bolas for z6; bubbles for z2).

The end-point a2 = 0 lies outside the F'13 and E± as well as £’Oi = as. The 
3-mass envelope £134 can only come from below the E12M. One will then 
have essentially a final situation similar to that shown in Fig. 18.

(C) Two Up and Two Down; (bubbles for zG; hyperbolas for z2).

This one gets from (B) by simply permuting within one pair of con
jugate indices. The net result (cf. Sec. III. 2) is the interchange of the role 
of z6 and z2.
Thus, e. g., if one permutes z3 and z4 from (B),:

yiy3y4y5>0: (137)

Mat. Fys. Medd. Dan.Vid. Selsk. 33, no. 3. 5
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The 3-point boundaries are F'1q U U f'46 U F^6 in the r6-plane, and 
F35 U F14 in the z2 plane. The 3-point and 4-point conditions are literally 
the same as (135) and (136) if one permutes r3 and r4. The F/s are shown 
in Fig. 25. This suggests a 2-mass envelope.

Figure 25. 1-mass curves in z6-plane for the configuration (C): Two up and two down (bubbles 
for r6; hyperbolas for z2).

Note: In Fig. 25, one sees again the situation of Fig. 14. Here the 4-mass 
envelope Ff234 is terminated at a3 = 0. Now the 3-mass envelope F124 will 
intersect this point in the z6-plane from above the line Ff234 (since the other 
line F1234 in this case lies below Ff234, and from our analysis of (92), the 
3-mass envelope must lie outside the region bounded by these two lines.) 
One gets again a corner in the intersection F1234 n F124. A 2-mass envelope, 
say, F14, is then expected to cover this corner. The situation is depicted in 
Fig. 25 a.
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(D) Two Up and Two Down: (bubbles for "6; bubbles for z2).

One obtains this configuration from (A) when one shifts one pair of 
conjugate indices (7,5) or (5,4) to the opposite half-plane. Here we have, 
e. g. :

?71.y3?/4!/5>0: ?/l.V5>0’ i/iJ/3<0- (138)

The 3-point boundaries are F'w U F36 U F'46 U F'5Q in the r6-plane, and 
^23 u f25 U F12 U F24 *n the *2'P^ ane- The 3-point condition is in this case 
(with (5,4) down)

Min { arg r3, arg z4}> + Max { arg c4, arg z5) (139)

and the 4-point condition reads:

(i) arg zt < 4% + 2 Min {arg z^, z = l,...,4 (140a)
i

M ax { arg z4, arg z5 } > 2 n - M in { arg z3, arg r4 }
5*

if
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or (ii) Fargc^S Max {arg rj, z = l,...,4 (140 b)
if i

Max { arg arg c5} < 2 rr - Min {arg z3, arg r4 ).

(£) Three Up and One Down: (1 hyperbola and 1 babble each /'or r6 and c2).

H°1C y x y3 y- < 0. Consider, for example:

l/l- l/3> l/4>(1’ and l/5<0- (U1)

Figure 26. 1-mass curves in z6-plane for the configuration (E): Three up and one down (one 
hyperbola and one bubble each for ze and z2).
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The 3-point boundaries are then F13 U F46 U F56 in the z6-plane, and 
^14 U ^23 u ^25 in the z2-plane. The 3-point conditions are:

argz1 + Max{argz3,argz4}<7i |
argz5>zt + Max{argz3, argz4} )

and the 4-point condition reads for this case:

2 arg z5 + 2 Max {arg z4, arg z3, arg r4 } - 2 % < >_ arg < 2 arg z5. ( 143)
i

A typical case is shown in Fig. 26 (which suggests a 2-mass envelope).

VI. 6 Brief Remarks on the Degenerate Cases.

In our above description of the 1-mass curves, we have only considered 
the configurations where all four sets of the ø^-manifolds are simultaneously 
relevant. It would be of interest to see how the 4-point boundary changes 
its character when one or more ø^-manifolds become irrelevant. While 
we shall not attempt to enter into the discussion for this in detail, we oiler 
two remarks on such degenerate cases:

(1) Lemma 4: Non-relevance of 2 sets of ø-manifolds must imply the non
relevance of at least one more set.

Proof:

It suffices to show this for one particular configuration, say, in the case 
when 4 of the 6 z’s are all in the upper half-plane, 0 < arg zi<zt, z' = 1, 3, 4, 5 
(cf. configuration (A) of Sec. VI.5), (since the proof for the other con
figurations can be easily carried through with only trivial modifications).

Suppose ø2 and 04 manifolds are both irrelevant in the z2-plane, then

arg z4 + arg z4 > zt

argzg + arg z5>tc.

Assume 03-manifold to be relevant in the z6-plane (otherwise, nothing is 
to be proved), so

arg ri + arg z3<^.

Then ^-manifold must be irrelevant, since

arg z4 + argz5 > 2 - arg zx - arg z3>n. 
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(la) An immediate consequence of Lemina 4 is the following. When 02 
and 04 manifolds are both irrelevant (thus, e. g., one has the cut-plane in 
z2), then in the r6-plane, one has at most one set of relevant F' curves for 
the 3-point boundary. In this case, the 2-rnass envelopes will not be 
expected to play a role, and the 4-point boundary will then be at most 
made up of the 1-mass surfaces which are analytic.
(2) The case when all 4 sets of øÅ.-manifolds are simultaneously irrelevant 
is, of course, trivial. Absence of any relevant 3-point boundary implies 
no change of relevance for the 4-point boundary. Since the latter cannot be 
entirely relevant, it must be entirely irrelevant. Thus, in this case, one gels 
the cut-planes.

VI. 7 Conclusion

It should be emphasized that we have by no means exhausted the boun
dary of the 4-point domain in perturbation theory. In fact, we have only 
explored it to the extent that we have shown how the 4-point correction to the 
already existing 3-point singularity might look. Our studies of the domain Z)Jert 
shows that the relevant 4-point singularities will carve out some bubbles 
from the dominating F' curves of Z)£ert. The singularity domain of the 4-point 
proper is seen to be compact. We have demonstrated that in general the
1- mass surfaces will not constitute the whole boundary of I)^eTt and that 
the presence of the envelopes implies that 7)4ert is not everywhere bounded 
by analytic hypersurfaces. Of the various envelopes we have discussed, the
2- mass envelopes are the most important ones.

It is hoped that, if the 3-point analogy is again valid in the 4-point case, 
the results derived here might be of some use to the problem of finding 
the holomorphy envelope EÇD^) based on the axioms of local field theory 
alone.

We conclude by posing a question. One recalls again from the 3-point case 
that the domain /)jrim is bounded by the /-"-curves (say, for the case when both 
Im Zj, Im zk have the same sign) of KW, which differ from the holomorphy 
envelope F'-curves only by the exactly opposite signs of the range of the 
parameters (which, in the p-space, has the significance of being m^). 
Intuitively, this can be understood as follows: If one starts from the original 
tube domain En_1 of the vectors pt where one requires Imp^V, this 
automatically forces one to go off the mass-shells and in particular one 
finds it convenient to go to negative values of the mass-squares = 72?a<0. 
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(This situation is clear, for example, in the proof of dispersion relations, 
with the technique of Bogoliubov54.) So dD^Tim essentially involves the 
manifold with the parameters still in the range cqcO. The problem of 
finding the holomorphy envelope then furnishes the necessary analytic 
continuation from ai < 0 to ai>0, which is by no means trivial. This is 
exactly the relation between the F-curve of Z)|rim and the F'-curve of F(F3), 
or the F'-curve of F|ert, as shown by KW.

Therefore it will be of interest to see whether or not this analogy is a 
valid one in the 4-point case, viz., whether dI)£ert can be compared with 
^yjpi-im oniy a possible difference of the signs of the parameters*.  Of 
course, the problem is much more complicated in the 4-point case, since 
one is dealing with the envelopes in both dD%Tim and dD^eTt. An answer 
in the affirmative sense would further strengthen one’s hope that dD^eTt 
may have something to do with dE(D^). But this we shall leave to a sepa
rate investigation.
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Appendix A
Explicit Form of the 4-Point Function

Nr. 3

Here we discuss tlie singularities of Z(r) of (54) after explicitly carrying 
out the final integration for FAr^ in (55). For the case r2, the singu
larities are found on the 0fc-manifolds and the 7?/t-manifolds (cf. Sec. IV. 4). 
Finally, for the case = r2, the change of relevance of the ^-manifold is 
shown to occur at (W = 0) A (0fc = 0) (cf. Sec. V).

By symmetry, it suffices to write down F^r^ only, say, for j = 1, i = 1, 
namely for the first half of the terms for the triplet (r2,"3,z5). A straight
forward compulation from (55) yields:

(ri) = | A j log ~ ~ log Z1 (rj ) + log log xi Oi )

+ A 0/1 (rl)) “ A (1/2 0*1))  /

(A.1)

in which each AO/*( rf)) is a sum of 16 Spence functions:

where

AAnOi)) = A \
/z = 1

and

f’ dt<K>) = \ y log (1 +0

1
dl,2<a) =

1
2

d Ai ( a) 
da I A A4. (a)

-P3 ± VA 7?3

(A. 2)

(A.4)

(A-5)

(A-6)
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where

0J5, 6 — ‘^l,2

æ7, 8 = ^2W3, 4

The following identities can be easily verified:

(A.6a)

4-5
^2 = z/l(a) >/2(a) = A3M1M2 ^2(o3(,j4 ‘^3 ^5^6 — '^2 OJ7O>8

and
4 4
/7 (r/iC«)-^) 17 (r/2(x)-co^)

log/^a) = logA2A3 ----------------- = - logA2A3^|1
11 (?/1(a)-œ/J Il (t]2(oc)-co^)

/I = 5 /Z = 5

(A. 7)

(A. 8)

We now briefly discuss the singularities of X Fjtj'i)’ with given 
by (A.l), for the case r1#r2-

(1) The first term is log----- — • log The point rx = 0 corresponds to

the 01-manifold (cf. (48)). It is clear that a cancellation of the 3-point type 
occurs here when the summation over j is carried out. Finally, for rx 0, 
or 1, the zeros and poles of X;(ri) can a* most lead to the cuts in the 
r’s. (cf. (51) and Sec. IV.4).

logz/n)- Here the vanishing of ?/1(l) or

z/1(0) gives the 0J +x-manifold.
(3) Now we come to the Spence function terms. Each Spence function 99(C) 
is defined with a cut in the £-plane starling from its branch point at £ = — 1 
to infinity. Now the branch points in (A.2) occur at

and
M1 ) = °>

// = 1, . . . , 8
— >/i(0) = 0.

(A. 9)

With the aid of (A.8), we see that this happens at the two ends of the inte
gration interval. Again the point a = 1 is irrelevant. But the point a = 0

Mat.Fys.Medd.Dan.Vid. Selsk. 33, no. 3. 6 
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leads to the ø1-manifold, which is to be expected. Note that the points rx = 1 
or 0, which give 9>(0) = -ti2/12, are entirely harmless for the Spence 
functions.

Another source of singularity for the Spence function 9"(C) is at infinity. 
Now this happens when

^10'1)-^ = 8 (A. 10)

or, according to (A.8), this implies zeros or poles of ^(7^). But these can 
at most correspond to the individual cut in each of the z’s.

Thus we conclude that from the explicit expression (A.l) and its per
muted form for the case i\^r2, the singularities of the 4-point function 7(z) 
of (54) are confined to the 4 sets of (/^.-manifolds and the 6 cuts, one for 
each z along the positive real axis. This agrees with our simple argument 
in Sec. IV.4.

Finally, from the representation (A.l ) and its permuted forms of FAz^), 
;

we now briefly discuss the change of relevance of the ’F-manifold in the 
case r1 = r2. Here the expression (54) gets essentially a contribution from 
the first term in (A.l) (summed over j) in the neighborhood of the 0rmani- 
fold:

where

and

— — [log *1  log H Z;(ri) - log i-2 log 77 Z;(r)] i - rz j ;
n-2zri , n nm (2 zii )2~ -log— ~
7’1 — rz Tz *F  = 0 |/ 0

(A.11)

log77/y(r/) = log 1 = n • 2 zti, by virtue of (51),

~ log 1 = in ■ 2 zti; 
•F=o

7?, 777, integers.

On the 01-manifold, one of the r4, say rx, becomes zero, while the other 
is finite. Thus on one side of 01-manifold, 777 = 0 (if we are on the prin
cipal sheet to start with, e. g., for all z’s being negative real), but on the other 
side, 727 #0. This shows a change of relevance of the *F-manifold  at its 
intersection with the ^-manifold. In a quite similar fashion, e. g., from 
the second term in (A.2), there develops a change of relevance across the 
0j +j-manifold. To show this, it suffices to note that at (?F== 0) A (0j + i = 0), 
one gets A’^z^) •= 0, whence log ^-(z^) = log 1 also, for each / = 1,2,3.

This confirms Lemma 2 in a more explicit wav.
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Appendix B
Envelope Problem for the ø-manifold

In staling that the 3-point domain is bounded by analytic hypersurfaces 
(obtained by setting two of the three mass-parameters equal to zero 

from the 0-manifold), it is understood that the envelopes of the 0-manifold 
are trivial, in the sense that they do not exist off the cuts and hence never 
actually contribute to the boundary (apart from what one has already on 
the cut). The purpose of this appendix is twofold :

(a) To give a proof of the above statement55, and
(b) Since the 0-manifold is of a much simpler structure, the analysis here 
actually serves as a prototype for the treatment of the ^-manifold (cf. 
Sec. IV), despite the fact that the final situations are quite different in two 
cases.

The notation here for the variables in the 0-manifold follows that of KW.

1. 3-Mass Envelope E123 :

Let

The analogue of (63) is

2* = 1
The analogue of (64) is

ø = 1 A dø- > 0.,
lkdak’

(B.l)

(B.2)

(B.3)

where the 0iÄ.’s denote the elements in the determinant (B.l) without, 
however, the factor 1/2.
The Analogue of (70) now reads on the 0-manifold:

3

k = 1
(B.4)

55 This is previously known to KW, but remained unpublished. My sincere thanks are 
due Professor Kâllén for his many enlightening discussions on this, and for his kind permission 
to include it here.

6*
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On the envelope F123, we have

dø
den Pi _ Yi
90 Pk ~ yk
9 (ik 

where the yk’s are real, such that

Thus the analogues of (72) are

> <J™0ik)yk = <>
A-

y <Re <**«)» -"•
A-

(B.5)

(B.6)

(B.7)

(B.8)

Now from (B.7) follows immediately the analogue of (73):

() = det I Imøik I = 2y1y2y3. (B.9)

In general, for given yl, y2,^0, (B-^) duplies that y3 must be zero on the 
3-mass envelope. Or in other words:

No 3-mass envelope for the 0-manifold can exist off the real axis.

This is also a horizontal line in the r3-plane (cf. F1234 of (74) in the 4-point 
case). At this point, one can immediately see that h’123 *s irrelevant: It cannot 
be relevant on the negative real axis. Then at most /f123 can lie on the 
positive real axis, which is already the cut.

The following, however, is devoted to an explicit solution to the real 
part equations (B.8), showing that E123 (as well as the 2-mass envelopes 
discussed below) is actually non-empty, and in one particular configuration 
(i. e. bubble) the 3-mass and the 2-mass envelopes are rather amusing 
(cf. Fig. 28).

With y3 = 0, it follows further from (B.7) that

?3 = 0 

yi = - yi
?2 y-2

(B.10)
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Or, when normalized according lo (B.6),

yi - y2
------------- ; ?2 =yi - ya yi - y2

(B.lOa)

With these explicit values of the y^’s, the real part equations (B.8) yield

i/i "i + (. - y2> «2 + (yi - y2> «3 = O2yi - æi ys) (B.ll)

(B.12)yî°i y26/2 —

Fhe path C123 in the u^-space (which would give rise to B123) is then the 
straight-line intersection of the two planes given by (B.ll) and (B.12), 
within the octant ak>(). We now divide our discussion into two parts:

Case 1: (Bubble configuration).

Without loss of generality, we may take t/1>0. In this case, (B.ll) is 
compact within the octant <zfc>0. Therefore its intersection with (B. 12) gives

Figure 27. Paths in the a-space for the 3-mass and 2-mass envelopes and the 1-mass curves 
for the 3-point (P-manifold: y1y2< 0.

a finite straight-line segment AB (Fig. 27). The image of AB in the z3-plane 
is given by (B.13). More explicitly, we have from (B.12) and (B.13)

(B.14)
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which, together with (B.12), implies that ar and a2 are positive if and only 
if ,r3 is positive. Furthermore, one gets from (B.ll) 

where

(jJAi/2) , (0)
<r3)’

T(o) = (yi-y2)
3 C~yiy2)

(B.15)

(BIG)

Figure 28. 0-manifold envelopes for the bubble configuration in the z3-plane.

is precisely the abscissa of the point E (Fig. 28) which is the common inter
section of F13 and F23 with the x3-cut.
Note that

.4()) > 0, for arg r2 > % + arg ,

which is the relevance criterion for the bubble of Fig. 28. From (B.14),
(B.12), and (B.15), it is clear now that OE is the image of AB, since all 
ofc>() if and only if

()<.r3<x30). (B.17)

This shows that in the case when the 3-point boundary is given by the 
bubble, the 3-mass envelope for the <P-manifold is actually the segment of 
the cut on the real axis lying inside the bubble. It will be shown later that 
the end point E (where a3 = 0 on the 3-mass envelope) actually constitutes 
the 2-mass envelope E12 for the 0-manifold in this case.
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Case 2: i/1i/2>0 (Hyperbola configuration).

In this case, the results become dependent on the ratios of the real and 
imaginary parts of z2 and z2.

(i) when y1 = t/2, we must have also aq = x2 as a consequence of (B.ll) 
and (B.12). The allowed region in the afc-space becomes unbounded, being 
the whole plane (B.12) within the octant a&>0 (i. e., cq = a2, a3 arbitrary). 
The image in the z3-plane is a single point .r3 = 0, viz., F123 is at the origin.

Figure 29. 0-manifold envelopes in the z3-plane for the hyperbola configuration: x(30) < 0.

(ii) iji^-y-2- (B. 14) and (B.15) now imply that all ak>() if and only if

,x3 > Max 0, .r30)). (B.18)
Thus

(iia) if .r3°F< (J, £’123 is the whole cut .r3 > 0. (Fig. 29).
(iib) if x30)>(), E123 starts from x3 = x30). However, this point has no 

significance for the case z/iy2>0, since the hyperbola F'12 (Fig. 30) inter
sects the real axis at P with

æ(p) = y± y2 f(xi - X2ïz+vO2] 
(j/l+l/2)(æll/2+æ2Z/l)

In this case one has both
.4P)>.r'"> I

and 3 3
4p’>o I

for arg Zj + arg z2< tt, which is the criterion for F12 to be relevant.

(B.20)
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II. Two-Mass Envelopes.

It can be easily seen that the 2-mass envelopes still lie on the cut along 
the real axis.
We shall only treat P12 here with o3 set equal to zero; for the others the 
analysis can be easily adapted. The envelope condition reads:

Pi
P2

kPi
]/Ë2

a real number. (B.21)

Figure 30. ø-manifold envelopes in the z3-plane for the hyperbola configuration : ,r'3° > 0.

Case 1: 1/11/2
(B.12) and (B.14) now no longer hold, however, (B.ll) with a3 = 0 

is equivalent to (B.21). Furthermore, (B.13), which can be regarded as 
the equation for the 0-manifold in this case, is still valid. From these, one 
gets rather unexpectedly that E12 is just a single point at .r3 = ,r30\ (viz., the 
point E of Fig. 28). Geometrically, in Fig. 27, CD is now the path for E12 
in the positive quadrant. The entire segment CD is mapped into the point 
E, w hich is exactly the end-point r/3 = 0 of E122.56

56 The fact that the path for £12 is simply the projection of the plane for E123 in 3-space 
onto the 2-plane must be regarded again as a peculiarity of the 3-point case. This is not true 
in the 4-point case (cf. Sec. VI), where we have shown that, although the path for £’1234 is also 
a straight line in the 4-space, the paths for Eijk and En: are both not projections, and are very 
far from being straight lines.

In this case, it is interesting to note that the path OC along the <q-axis 
and the path OD along the rz2-axis in Fig. 27 map respectively into the rele- 
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vant portion of F'22 and F'13 in Fig. 28 (with the common end-point F be
sides the origin). The occurrence of such multiple intersections of £'123 n 
E12 A Fy fl E2 must be regarded as a 3-point peculiarity (cf. Fig. 19 
and the accompanying remark). In the 4-point case, we have seen, however, 
that in general we have only the intersection between an /»-envelope and 
an (m — 1 )-envelope (cf. Lemma 3).

Case 2: yiy2>U

Following F123 in this case, and the Ei2 for the above case, we see that 
Ei2 for this case also consists of a point at .r3 = .r3 . Now

(i) If .t<0)<(), E12 is irrelevant, and
(ii) If.r3 >0, F12 is the point F in Fig. 30, which is imbedded in the cut.

Appendix C
Some Algebraic Details for the 4-Mass Envelope

We give here the details for the values of the yk’s on F1234, and the de
pendence of their relative signs on the configuration of the y’s.

Solving (72a), one gets

71 72 = ys. yi/3 = ye. 7174 = yi c
7374 yi ’ 7274 y2 ’ 7273 y3

or equivalently: 
71 = y3y4±J/yi yayi y5
72 -yzy*

73 = yiygiKyiysyiys (c.ia)
72 -y2y&

74 = ± |/yiy3y4y5
72 1/3 y 5

These may then be normalized according to (67). The (±) signs correspond 
to the sign of Ff234 in (74). From these, one immediately notes that, for 
example,

011 -^1234’

and
7i73 5° according as yiy3<0,

7s74<6 according as y3y5<0.
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'file exactly opposite statements hold on 7ï1234
We summarize the results in Table 1 :

Table 1 : Relative Signs ol’ yk on £4^34 Versus Configurations

Cases
Configuration of y Relative Signs of yks

Up Down On £4234 On £1234

I 1, 3, 4, 5 2, 6 all yjfc>0
(i) 7i> .74 II 7a. 73

(ii) 71- 72 II 73. 74

II 1,2, 5, 6 3, 4 ri’ y2II73’ y4
(i) 72’ 74 II 71’ 73

(ii) ail yk > 0

III 2, 3, 5 1,4, 6
(i) 7i 11 73’ 72’ 74

74 II 71’ 72, 73
(ü) 73 II 71’ 72’ 74

IV 1, 2, 3 4, 5, 6
(i) 72 II 74’ 71, 73

y3 II 7T./2. 74
(ii) 74 II 72’ 71’ 73

Remark: (a) These are the only four distinct configurations of the y’s for 
which £^34 exists. The remaining case with all y/jl>0 is disregarded here, 
since the 4-mass envelope is entirely irrelevant in this case (cf. remark 
following (76)). The permutation of (5,4) with (Ï, 5) in case II is trivial. 
So is the permutation of (2 > 6) in cases III and IV.

(b) The subdivision into (i) and (ii) is based on
(i) I 717s I >1 73.74 I
(Ü) I 7175 I < I 73.74 I . respectively. Note that, when 7i75 = 7374, one of the 
lines £^34 coincides with the cut.

(c) All signs except in the case when all yk>0 are meant only in a re
lative sense. Thus we use the double bars to denote that the y’s lying on 
the same side of the double bar have the same sign, while any two y’s lying 
on the opposite sides of the double bar have opposite signs.

(d) The above results can be briefly stated as follows:

(1) When the signs of the 6 7’s break into 4 || 2, the signs of the 4 y’s 
break into 4 || 0, or 2 || 2.

(2) When the signs of the y’s break into 3 || 3, then those of the y’s 
break into 3 || 1.
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With Table 1, one can readily infer from (77) or (80) the signs of the 
aks on the 4-mass envelope at .r6 -> ±oo. For and a3, no other information 
is needed; however, for a2 and a4, there is a further dependence on the 
magnitude of y2 an(l 74 (when the latter are positive). Table 2 illustrates 
the situation for z6->-oo. Exactly opposite statements hold for the signs of 
the ak at the other end æ6->+oo.

* For the cases III and IV in Table 2, the signs of 4 y’s break into 3 || 1. Table2 assumes 
that 3 y’s > 0 and one y < 0.

Table 2: The Signs of ak on E’f|34 at ,r6- oo,

Cases*
«1 and a3 «2 «4

On E^34 On E1234 On £'1234 Oil E1234 F+ F~7-1234 7-12.34

(i)I
+ - -

(Ü) + - -

(i)I I - +

(ii) - + - -

(i)111
+ - + (?2> 1) ±(72>!) T(/4>>) -

(n) + - ±(72>!) T(74$ O -

(i)
IV

- + - ±(74>1) =F(Z4$1)

(Ü) - + ±(?2> O =F(Z2§1) - T(n> 0

(1) All yk positive.

In this case, we have
0<n<1 - = !• (C-2)

From Table 1, we see that this happens only for the following two configura
tions (Figs. 31-32). We recall from Table 1 that all yk>0 hold for the con
figuration (Fig. 32) only for z/1y5< y3{/4 (otherwise 2 of the y’s become nega-

The remainder of this appendix is devoted to the discussion of the case 
when the (all ak positive) segment E1234 has an intersection with the set cox 
of (82). For this, it will be convenient to divide the discussion into the fol
lowing two classes of configurations:
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tive). When J/1.V5 ~ J/3J/4 the *̂ ne ^1234 collapses into the cut on the real
.r6-axis. On A\234, we have, in general, by virtue of (72):

2^ (/?<? = 0 I
*'} (C.3)
X (/wi (^tf) W = <»■
t, J

Now the y’s of (C.2) may just be identified as playing the same role as our 
original integration variables afc’s. Therefore for this case, the denominator I)

y6

Figure 31. All > 0 on the 4-mass envelope for the configuration (1) of Table 1.

of (15) will indeed vanish identically on 771234 (where all ufc’s are positive). 
When this segment has an intersection with the <Z\.-manifolds, part of it 
will have actual singularities.

One observes from Table 2 that A\234 are finite for both of these con
figurations, since two of the r/’s (viz., o2, u4) are negative at .r6-> —00, and 
the other two (viz. rz1, o3) are negative at the other end (.r6-> -00).

(2) Not (ill yks positive:

In this case, identification of yk with txk is not possible, thus (C.3) do 
not automatically imply that (16) will vanish on £‘1234- In fact, it can be 
easily seen that Re 1) never vanishes for xea)x of (82).
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3
One notes from (16), after the substitution a4 = 1 — N af,

i = 1

- Re 1) = -1 ( Re ) a.t Xj =
“ i.j

where

^O)z , 0,2 ^(æ;a)
A,(.r)(a‘ + ~4.17o

(C.4)

Figure 32. All y//s > 0 on the 4-mass envelope for the configuration (II) of Table 1.

1
2 .r6

d2A(x) d2A (x)
dxidx2 0x4 0x2

ai -

1
zi(.r)

dA(x)
0x2 *i

O0i(x; a)
da3

ao
1

Qi(y ; «)
4.4 (x)

O20i (x; a)
d x4 d a3

(Cf. E<[. (35)); (C.5)

and ^(x; a) tiet | Re |
which vanishes identically on -£1234- Thus we see that (C.4) is positive de
finite for xeco.,., unless simultaneously

af = — a?, for i = 1,2, 3 

a°<0, 1-
and I (C.6)
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It is now easy to see that (C.6) cannot happen when at least one of the y/s 
is negative. We have on 7<1234, alter treating the det | Re | with exactly 
the same procedure which led to (64),

a)
4zl(.r)

(C.7)

Now, without loss of generality, we may take57 yi<0. Then (C.5) im
plies that «J = - >0, and (C.6) clearly cannot happen. Thus for all 
cases with yK not simultaneously positive, - Re D is positive definite on 
co^D T’1234, and it follows that this portion of the 4-mass envelope can never 
be a relevant part of the boundary.

57 Otherwise, a trivial permutation will bring (C.4) into the form where the last a” cor
responds to the desired negative y^.

For completeness, we note the following identity on the 4-mass envelope:

2ReD- Y (C.8)

which can be easily verified with the aid of (77).

Appendix D
Note on the Determinant Expansion

We here observe that a great number of identities which have played 
an essential role in our preceding discussion, such as (43), (44), (45), 
(100), and (110), have a most natural interpretation in terms of their as
sociated determinants. Take, for example, (43), which reads:

11 d \2

Recalling the quantities following (57 a), we have, for Å-= 2
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where ^12>12 refers to the minor complementary to the 2x2 minor

58 See, e. g., an elementary text by A. C. Aitken, Determinants and Matrices, 3rd ed., 
Edinburgh (1944).

^21

in the ^-determinant of (57 a). Then (D.l) takes the form

t^ll <£/12

qj2i y/22

^33 ^34

^43 ^44

(D.3)

Now identity (D.3) can be easily verified to hold for a general 4x4 deter
minants Thus (D.l) is established for k= 2, and by symmetry the others 
follow. At this point, the corresponding identities for the 3-point case (KW 
(A46d)) are seen to be also derivable from such a determinant expansion.

Ir appears, however, that identities of the form (D.3) are actually 
very special cases of a general theorem, which, in various forms, has been 
dated back to Gauss (also for symmetric determinants) and others. We 
shall here quote a theorem due to Jacobi58, which states that

Any minor of order k in A-1 is equal to the complementary signed minor 
in A' (the adjoint of A), multiplied by |A|-1.
In other words, this technique of determinant expansion relates the block I 
in (D.4) with the block II in (D.5), their determinants being off by a factor 
of the original determinant:



88 Nr. 3

—'— (n-A-)
(n - k) I

It is then a simple matter to derive all the identities we mentioned by 
simply writing down the desired kxk minors in this fashion.

Institute of Theoretical Physics, University of Lund, Lund, Sweden - and
Institute for Theoretical Physics, Swiss Federal Institute of Technology, Zurich, Switzerland.
Work supported in part by the U.S. National Science Foundation and U.S. Air Force Office 

of Scientific Research, Air Research and Development Command, under Contract AF 49 (638)-24 
at the University of Maryland, College Park, Maryland.

Present address: Institute for Advanced Study, Princeton, New Jersey.

Indleveret til Selskabet den 21. oktober 1960.
Færdig fra trykkeriet den 25. august 1961.



Matematisk-fysiske Meddelelser
udgivet af

Det Kongelige Danske Videnskabernes Selskab
Bind 33, nr. 4

Mat. Fys. Medd. Dan. Vid. Selsk. 33, no. 4 (1961)

THE STRUCTURE OF
BARIUM BROMIDE DIHYDRATE

BY

EVA BANG

København 1961
i kommission hos Ejnar Munksgaard



Synopsis
BaBr2,2H2O belongs to the space group C2/c. The unit cell contains 4 molecules. 

a = 10.449 Å, b = 7.204 Å, c = 8.385 Å, ß = 113° 29|'. X-ray analysis by 2-dimensional Fourier 
methods shows [Ba(H2O)2]0C columns in the direction of the c-axis, placed in between buckled 
layers of bromine atoms. The structure shows features reminding of SrCl2,6H2O. The shortest 
Ba-Ba distance is 4.44 Å, only a little larger than found for the element. The distances Ba-Br 
are 3.41 A, and 3.49-3.52 A. The distances Ba-H2O are 2.82 A and 3.90 A and Br-HoO are 
3.25-3.33 A and 3.60 A.
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Introduction

ery few detailed structure determinations on hydrated simple metal halides 
have been reported in the literature: three fluorides, eight chlorides, 

and one bromide. Five belong to the group of alkaline earth halogenides:
BaCl2,H2O, BaBr2,H2O, SrCl2,6H2O, BaCl2,2H2O and SrCl2,2H2O.

The monohydrates, investigated by electron diffraction1’ 2 are isomorphous 
H2O h2o

(Pmcn). They contain zig-zag chains of / \ / \ where barium
Ba Ba Ba,

has 2 water molecules and 7 halogen atoms and the water molecule has 2 
barium and 7 halogen atoms as nearest neighbours. The structure consists 
of a net of halogen atoms where barium and water alternate in the holes.

In SrCl2,6H2O3 (P321), we get a one-dimensional lattice complex of 
[Sr(H2O)6]M, where strontium has 9 water molecules as nearest neighbours 
and no chlorine. There are 2 types of water molecules, one has 2 chlorine 
and 2 barium, the other has 3 chlorine and 1 barium as nearest neighbours.

The dihydrates BaCl2,2H2O4 (P2i/n) and SrCl2,2H2O5 (C2/c) contain 
infinite two-dimensional lattice complexes, where the cation has 4 chlorine 
and 4 water molecules as nearest neighbours in slightly different arrange
ments.

To get more information about the behaviour of the water and the 
structural differences in the hydrates of the alkaline earth halogenides the 
structure of BaBr2,2H2O has been investigated.

The crystal class of BaBr2,2H2O was shown to be 2/m by O. Mugge7- 8 
and H. Dufet,9 and the crystals to be optically positive. They can be ob
tained by slow evaporation at room temperature and very often appear from 
the same batch with quite different habits: plates, rods, or needles after [001 
with parallel extinction, needles after [110 with oblique extinction. Twins 
occur very often and arc difficult to recognize. The needles after [110] 
usually are not twinned. The morphology has been very carefully described 
by O. Mügge,7 who used the deformation by pressure into twins to show 

1*  
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that the crystal class was monoclinic and not orthorhombic as suggested by 
C. Rammelsbekg and others.10- 11

The powder diagrams of the 3 dihydrates mentioned above show that 
BaBr2,2H2<) is neither isomorphous with BaCh, 2H2O nor with SrCl2, 
2H2O.

X-Ray Examination, Unit Cell, and Space Group

Preliminary axes were taken from oscillation and Weissenberg diagrams 
(camera 57.3 mm) and refined from powder diagrams (Table 1). The powder 
diagrams have been obtained by means of a Bradley 19 cm camera and a 
Guinier type focusing camera with Cu radiation.

The unit cell dimensions arc

a = 10.44g ±.03 Å b = 7.204±.02 Å c = 8.385±.O2 Å,
ß = 113.49±.3°.

The angle between [100] and [102] is 90.18°.
The axial ratio a : b : c calculated 1.450 : 1 : 1.164.
The axial ratio a : b : c given by O. Mügge7 1.44943 : 1 : 1.16559. 
ß angle (supplemental angle of ß given above) from O. Mügge7 66° 30V. 
The density 3.872 is°12 gives 4.05 molecules pr. unit cell.
The Weissenberg diagrams were taken by multiple film technique, the 

intensities estimated visually. As the crystals easily are deformed by mechan
ical pressure no attempts to cut a small fragment have been made. No cor
rections for absorption and temperature factor have been applied as only 
()-layer lines have been used for the final calculations. The intensities from 
rotation round the b axis should be less accurate, as it is very difficult to 
find a crystal with a suitable cross-section in the a-c plane. The usual cor
rections for polarisation and Lorentz factor have been applied.

With the monoclinic setting given above, reflections were present only 
for h ±k = 2/i and hOl for 1 = 2n. | F(hkl) | = | 77(hkl) |. The possible space 
groups are Cc or C2/c.

Investigations into piezoelectricity for the crystals gave a negative result.* 
It should, however, be mentioned that piezo- and pyroelectricity have been 
reported in a paper from 1897.13 The possibility of a lack of symmetry centre 
will be discussed later in connection with the Patterson and electron density 
projections.

* Kindly performed by V. Frank, dynamical method.
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Table 1. Comparison of observed and calculated sin20 values.

In dices
Estim.

Int.

104
sin20
obs.

104 
sin20 
calc.

110 win 0178 0179
111 wm 0216 0216
200 0259 0259
111 vvw 0345 0344
002 ( 0402

m 0403
202 1 0404
112 0453

vw br 0458
020 1 0458
021 vvw 0559 0558
31Ï 0605
310 vvw ? 0688 0689
22Ï wm 0700 0697
112 0710
312 vs 0715 0714
220 0717
022 0860

m 0861
222 0862
113 m 0891 0891
202 0918
402 0923
221 wm 0948 0946
311 win 0996 0990
313 vw 1024 1023
400 ms 1039 1036
130 ms 1093 1096
13Ï m 1133 1132
223 vvw 1235 1236
131 vvw 1263 1261
113 1277

Indices
Estim.

Int.

104 
sin20 
obs.

104 
sin20 
calc.

42Ï
422
222
132
023
204
420
512
312
51Ï
33Ï
314
114
330
004
404
332
423
513
132
510
133
224
040
42Ï
331
041
333
402
602
223
114
514

1341

1370

1490
1497
1512

1529
1536

1630

1675

1812

1910

1960
2010

2054

1337
1353
1363
1369
1376
1382
1485
1492
1494
1512
1521
1530
1534
1608
1614
1615

I 1627
1627
1630
1673
1733
1808
1811
1833
1852
1907
1934
1940
1952
1961
2007
2044
2055

The intensities applied in the calculations were taken from Weissenberg 
diagrams, where the crystals had the following dimensions :

Length along the rotation axis [001] .2 mm cross section .01 x .02 mm2.
- [010] .15 mm - - .15 x .3 mm2.
- [110] .5 mm - - .1. x.l mm2.
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Patterson and Electron Projections

The Patterson and electron projections were calculated on a Hägg- 
Laurent-Frank machine.14 The results for the Patterson function projected 
on (001) and (010) by using observed | F(hkl) | 2 values are shown in ligs. 1 
and 2.

In case we have the space group C2/c (No. 15 Int. Tab.) there are 8 
atoms in the general position:

(0,0,0; 4 , .1,0) +.r, y, z; x, y, z; x,y,?-z; x,y,l+z.

The origin is at the symmetry centre of the glide plane.
The 4 Ba must lie in a special position. The positions denoted as c and d 

can be ruled out, as they both would give rise to a Ba-Ba vector peak in 
0, 4, where the vector density is small for the [001] projection.

Assuming Ba at a symmetry centre a: 0, 0, 0 etc., or b: 0, 0, etc., we
should expect no separate Ba-Ba and 16 Ba—Br vector peaks if Br is in the 
general position (8 in the (001) projection and 8 in the (010) projection). In 
case the Ba position is on the twofold axis e: 0, y, 1/4, etc., we should get 4 
separate Ba-Ba and 16 Ba-Br vector peaks (16 in the (001) projection and 8 
in the (010) projection).

In the projection on (010) the Ba-Ba vector peaks are bound to fall in 
0, 0; 0, !, etc. The strong peaks outside the axes must be the Ba-Br vector 
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peaks. If Ba has the .r, z coordinates 0, 0, the x, z coordinates of Br can be 
evaluated (.21, .10), and thus most of the signs of the structure factors. In 
case Ba is in e: 0, y, 1/4, etc., the resulting projection will be the same except 
for a translation 1/4 c.

The Patterson projection on (001) shows 8 strong peaks outside the axes

Fig. 2. Patterson projection on (010). Relative arbitrary scale.

which should be taken as Ba-Br vector peaks. In case we have Ba in 0, y, 
1/4 the coordinates of the Ba and the Br atoms must have a correspondence 
that gives rise to superposed Ba-Br vector peaks in this projection.

The 4 Ba-Ba vector peaks in this case have the coordinates 0, 2y, 
etc., and if the strongest peak outside the origin on the b axis is taken as a 
Ba—Ba vector peak (yBa = .1 and yBr = i), we should only get 8 Ba—Br 
vector peaks and the coordinates of the Ba-Ba and the Br—Br vector peaks 
would correspond. On this assumption most of the signs could be evaluated 
and the electron density projection was calculated. This interpretation of the 
Patterson projection later turned out to lead to the correct structure.
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Table 2. Atomic parameters in BaBr2, 2 H2O.

X y

Ba 0 .101 .250
Br .218 .476 .350
O .01 .748 .445

As another interpretation of the Patterson projection on (001) the coordi
nates for the Ba atoms could be 0, 0, 0; etc. or 0, 0, 1/4, etc. The x, y coordi-

Fig. 3. Patterson projection on (110). Relative arbitrary scale.

nates for the Br atom were evaluated (.22, .40) and thus most ot the signs of 
the structure factors. The calculated electron density projection and the agree
ment between observed and calculated F values were not bad. (It = .3). It 
will be shown later that this structure was wrong.

In case there is no symmetry centre the space group is Cc, as mentioned 
above. The number of atoms in the general position is 4 and the coordinates are

(0, 0, 0 ; |, 4 , 0 ;) + x, y, z ; x, y, 4 + z.
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The origin is on the glide plane.
The 8 Br atoms must be coordinated in such a way that they give rise to 

only 8 Ba-Br vector peaks in the (010) and (001) Patterson projections. The 
combination of the 2 sets: .r, y, z, etc., and x, y, z, etc., and the same relation 
between the Ba and Br {/-coordinates as in the case C2/c fulfil this condition. 
The projections of this structure on (010) and (001) are the same as in the 
centrosymmetrical case and possible preliminary coordinates could be taken 
from the results mentioned above.

The projection of the structure along the [110] axis is noncentrosym- 
metrical. It turned out, however, that electron projections carried out for 
both space groups were of little help in distinguishing between the different 
possibilities at this stage of the structure investigations. The data were taken 
from a crystal needle showing oblique extinction. It was possible to coordinate 
the reciprocal net and the Patterson projection on (110) (fig. 3) throughout 
with the data from the crystals used before.

Only C2/c Ba in 0, 0, 0, etc., was cancelled out. The possible position 
of Ba is then 0, y, 1/4, etc., and of Br .22, y, .35, etc. The coordinates 
yBa = 0.1 and z/Br = 0.5 would be the most probable from a physical point 
of view as the Br-Br distance would be 3.8-4.2 Å, whereas yBa = 0.0 and 
yBr = 0.4 would give a very short Br—Br distance 3.1—3.4 Å for both space 
groups. In the layer structure of AlBi’3 the shortest Br—Br distances are 
3.59 Å16. rBr_ is 1.95-1.96 Å (Pauling-Goldschmidt).

A generalized projection on (010) made it possible to distinguish between 
the cases mentioned above.

Generalized Projection on (010)

In the generalized projection the electron density function q (.t, y, z) is 
modified by a weighting function e2-"711'2, where L is a constant value of 
Index 1. Examples and theory are given in the monographs by H. Lipson 
and W. Cochran17 and by M. Buerger.18

The generalized projection on (010) can be written

(æ> ") = U (æ, y.z)t>2 71 iKy bdz)
•'0

or

where
Qk (æ- ") = CK (x, z) + iS (x, z),
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CÄ (.r, z) = — Zh Zx A (7i K/) cos 2 ti (hx 4- Iz) + B (JiKl) sin 2 % (/ix + /z),

SK Gr> ~) = y B (^K0 cos - n G’æ + ^") ~ (hK/) sin 2 ti (hx + Iz) .

The real part CK(x,z) should approximately give the projection of the 
structure on (010) with the electron density of the nth atom multiplied by

Fig. 4. C (x, z) Fig. 5. S (x, z)
Fig. 4 and fig. 5. Generalized projections C (x, z) and S’ (x, z) on (010). K = 1. Negative areas 

are hatched. Relative arbitrary scale.

a

cos2zrKy and the imaginary part SÄ(.r, z) the electron density multiplied 
by sin 2 ti Ky.

As mentioned above, the possible position of Ba was 0, z/, 1/4 and of Br 
.22, y, .35. The possible (/-coordinates for Ba and Br were z/Ba = 0.0, 
t/Br = 0.4 or t/Ba = 0.1, z/Br = 0.5.

The projections were carried out for K = 1 (C2/c). Owing to the symmetry 
of the space group the calculation work was small. The calculated SK(x, z) 
and CK(x, z) clearly showed that </Ba = 0.0, z/Br = 0.4 was ruled out, as 
the <S'K(.i’, z) projection in this case was quite confused. Only the projections 
for 1/Ba = J/Br = are given here (figs. 4 and 5; cf. fig. 7). The S(x, z) 
projection shows a small bromine peak which indicates that yB1. is a little 
different from 0.5.

This information is in agreement with the Patterson projection along 
(110), but could not be obtained from it on account of overlapping peaks.
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Position of the Water. Refinement of the Structure

The structure found was a layer structure with Ba in the ac-plane on the 
twofold axes and a bromine layer in between. As the Patterson projection on

aô------•-----------o-- —g------ ®---- o ------ >|-

® • ® _____ .

Fig. 6. Electron projection on (001). Relative arbitrary scale for electron density.

(001) showed vector density along the yz planes and as the water molecules 
from a packing point of view cannot be placed near the bromine layer, the 
next highest peak outside the origin on the y-axis was taken as a Ba-0 
vector peak. The y0 could easily be deduced. The .r0 should be very near to 
0.0 and z0 was taken to 0.5 from a geometrical consideration together with 
the electron density projection and the 2 generalized projections on (010).
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The relining of lhe structure was carried out by difference syntheses using 
Eobs -77caic. for O-layer line projections along [001], [010] and [110], The calcu
lated and observed structure factors were scaled for each projection by 

plotting log10 against sin20. The resulting coordinates are given in 
Tcalc.

^0 Br
Fig. 7. Electron projection on (010). Ba on the twofold axis. Relative arbitrary scale for elec

tron density.

Table 2 and the calculated and observed F-values in Table 3-7. The electron 
projections are given in figs. 6—8.

Neither further refining nor a calculation for the noncentrosymmetrical 
case i/Br = 0.5 should be made unless better experimental data have been 
obtained.

Description of the Structure

The interatomic distances between nearest neighbours are given in 
Table 7.

Each Ba atom is surrounded by 2 Ba, 6 Br, and 4 H2O (fig. 9). The 2 Ba 
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atoms have a separation a little larger than found for the element. The 4 
water molecules are nearly lying in the plane of the Ba atoms. 2 have the 
shortest distance, 2 are a little farther away, the difference being of the same 
magnitude as found for the 2 types of water molecules in SrCh, 6H2O3. 
Four Br are lying on one side of the Ba atom nearly in a plane perpendicular

Fig. 8. Electron projection on (110). Relative arbitrary scale for electron density.

to the plane of the Ba atoms in a slightly longer distance than contact. 2 
Br are on the other side of the Ba atom perpendicular to the plane of Ba atoms 
and the plane of the 4 Br atoms.

The water molecule has 2 Ba and 5 Br atoms as nearest neighbours 
(fig. 10). The size and the difference in distance to the Ba atoms are mentioned 
above. Two of the Br atoms are in distance of contact on one side of the 
Ba-FUO—Ba group, 3 on the opposite side, 2 having distance of contact, 
1 being a little farther away.

The Br atom is surrounded by 3 Ba, 5 H2O, and 1 Br. One Ba has dis
tance of contact, 2 are a little farther away. Four H2O are tetrahedrally
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Table 3. Comparison of calculated and observed structure factors. 
Rotation [001] 0-layer line.

h k t- calc 1 l’obs 1 h k T71 calc 1 l'obs 1

2 0 8 13 9 3 38 30
4 0 88 103 0 4 15 13
6 0 29 31 2 4 58 58
8 0 36 36 4 4 1

10 0 47 40 6 4 32 32
1 1 29 31 8 4 22 22
3 1 69 59 1 5 41 45
5 1 8 10 3 5 18 22
7 1 66 52 5 5 54 47
9 1 9 7 5 6

11 1 45 31 0 6 8 15
0 2 57 42 2 6 51 56
2 2 47 51 4 6 Ï3 17
4 2 35 37 6 6 34 30
6 2 9 9 1 7 ÏÏ 10
8 2 3 3 7 2

10 2 15 16 5 7 20 14
1 3 23 26 0 8 25 17
3 3 12 10 2 8 2
5 3 45 43 4 8 20 11
7 3 22 23 1 9 16 19

coordinated round the Br atom at a distance of contact, 1 HgO at a slightly 
greater distance. The Br atom has a distance slightly greater than twice the 
ionic radius.

The structure could be described as consisting of flat [Ba(H20)2] 
columns parallel to the c-axis having the Ba atoms at a distance slightly 
greater than found for the element. The distance between the Sr atoms in 
the [Sr(H2O)6]0O complex in SrCh.OI^O is of the same size. Each 
[Ba(H2O)2] column is surrounded by 6 parallel Br-columns (fig. 11). The 
Br in the columns form a row just a little buckled, with the Br-Br distance 
within the same size as the Cl—Cl distance in the Cl columns. Each Br con
tacts 3 [Ba(H2O)2] columns through 1 Ba contact to one column, and 
2H2O contacts to each of the other 2 columns. There is a difference from 
SrCh,6H2O, where Cl only has water contacts to the [Sr(H2<))6] 
complex.

Another one-dimensional complex [BaQEO)] occurs in the mono
hydrates BaC12,H2()1 and BaBr2,ll2Û2 as zig-zag lines of Ba-H2O-Ba-H2O-
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Table 4. Comparison of calculated and observed structure factors. 
Rotation [010] 0-laver line.

h 1 F calc 1 Fobs 1 h t , Fcajc 1 Fobs

2 ÏÔ 1 8 2 2 46 35
4 ÏÔ 5Ö 37 4 2 13 12
6 ÏÔ 18 18 6 2 7Ö 53
8 ÏÔ 28 20 8 2 5 17
0 8 35 34 10 2 63 78
2 8 8 11 12 2 1 8
4 8 56 43 2 0 8 13
6 8 8 4 0 93 100
8 8 54 44 6 0 29 44

10 8 1 8 0 35 49
12 8 35 36 10 0 46 60

0 6 5 12 0 6 5
2 6 58 49 2 2 1
4 6 34 36 4 2 71 77
6 6 28 35 6 2 11 27
8 6 56 48 8 2 58 83

10 6 Ï 10 2 Ï 7
12 6 6Ö 52 2 4 63 56

0 4 4 7 4 30 38
2 4 90 58 6 4 23 32
4 4 7 9 8 4 46 69
6 4 71 67 2 6 68 64
8 4 10 4 6 3

10 4 35 41 6 6 52 55
12 4 31 40 2 8 27 31

0 2 58 43 4 8 9 15

in layers of halogen atoms. Here the distance of contact Ba-halogen is found 
between the layers, and the shortest distance halogen-HaO in the layers. The 
Ba-Ba distance is much greater than found for the element.

[Sr(H20)2] columns occur in the structure of SrC12,2H2O5, but the 
arrangement in the complex is quite different from the arrangement in the 
Ba(H2<))2 x complex in BaBr2,2H2O, and the distance between the Sr 

atoms is much greater than for the element. BaC12,2H2O4 shows infinite 
2-dimensional Ba—H2O complexes.

A description analogous to that given in (4) and (5) for SrC12,2H2O 
and BaCh, 2H2O, of BaBi’2,2II2O as a layer structure, where the layers are 
neutral complexes of BaBi’2,2 H2O. , does not fit so well here. The neutral
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Table 5. Comparison of calculated and observed structure factors. 
Rotation [010] 1-layer line k = 1.

h 1 Fcalc 1 I'obs 1

1 10 15 17
3 10 36 26
1 9 14
3 9 17 16
5 9 19 18
7 9 14
9 9 21 11
1 8 50 47
3 8 3
5 8 32 34
7 8 28 23
9 8 8

11 8 42 45
1 7 16 17
3 7 26 26
5 7 16 14
7 7 21 18
9 7 13 17

11 7 17 13
1 6 55 57
3 6 9
5 6 65 65
7 6 14 10
9 6 46 42

11 6 14 18
1 5 14 13
3 5 19 21
5 5 9 14
7 5 20 23
9 5 10

11 5 18 23
13 5 11 8

1 4 13 12
3 4 34 30
5 4 47 39
7 4 0
9 4 68 75

11 4 9 15
13 4 45 26

1 3 41 40
3 8 29 30

(to be continued)

h 1 Fcalc 1 I'obs 1

5 3 34 25
7 3 28 26
9 3 2Ö 31

11 3 24 35
13 3 22 16

1 2 18 20
3 2 88 50
5 2 3
7 2 47 70
9 2 32 42

11 2 12 12
13 2 38 20

1 Ï 31 18
3 Ï 12 9
5 Ï 26 36
7 Ï 11 15
9 Ï 18 32

11 Ï 12 11
1 0 30 20
3 0 69 69
5 0 7 15
7 0 65 82
9 0 Ï2 23

11 0 33 44
1 1 22 25
3 1 26 26
5 1 25 46
7 1 Ï6 25
9 1 23 41

11 1 Î3 10
1 2 76 70
3 2 4
5 2 39 55
7 2 3Ö 50
9 2 6

11 2 43 22
1 3 26 28
3 3 35 38
5 3 19 30
7 3 22 35
9 3 17 22
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Table 5 (continued).

h 1 F cale 1 l'obs 1 h 1 Féale 1 Fobs 1

1 4 63 58 1 6 ïï 17
3 4 9 14 3 6 25 24
5 4 60 70 5 6 33 38
7 4 5 9 1 7 25 25
9 4 38 26 3 7 16 15
1 5 Ï3 14 5 7 19 18
3 5 Ï6 17 1 8 7
5 5 9 13 3 8 48 44
7 5 Ï6 22 1 9 Ï8 22

Table 6. Comparison of calculated
Rotation [110]

h k I Féale 1 FObs 1

1 1 ÏÔ 15 14
2 2 ÏÔ 20 10
1 1 9 14 10
2 2 9 36 28
3 3 9 24 20
1 1 8 52 45
2 2 8 7
3 3 8 27 24
4 4 8 4
5 5 8 2Ö 22
1 1 7 Ï6 17
2 2 7 30 30
3 3 7 36 48
4 4 7 8
5 5 7 16 14
1 1 6 55 58
2 2 6 26 30
3 3 6 41 43
4 4 6 25 33
5 5 7 4
6 6 7 30 31
7 7 7 19 14
1 1 5 14 15
2 2 5 21 21
3 3 5 48 56
4 4 5 33 37

Mat. Fys. Medd. Dan.Vid. Selsk. 33, no. 4.

and observed structure factors. 
0-laver line.

(to be continued)
2

h k 1 Féale 1 ^obs 1

5 5 5 23 33
6 6 5 25 34
7 7 5 3 5
1 1 4 14
2 2 4 54 46
3 3 4 ÏÔ 13
4 4 4 6Ö 58
5 5 4 2Ï 34
6 6 4 4 14

'7 7 4 Ï9 14
1 1 3 44 37
2 2 3 28 30
3 3 3 Ï7 18
4 4 3 42 46
5 5 3 ÏÔ
6 6 3 44 48
7 7 3 25 25
1 1 2 18 19
2 2 2 25 29
3 3 2 28 28
4 4 2 47 56
5 5 2 54 61
6 6 2 7 13
7 7 2 2
1 1 ï 31 25
2 2 ï 55 32
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Table 6. (Continued).

h k 1 Fcalc 1 I" obs J h k 1 Fcalc 1 I'obs 1

3 3 Ï 24 27 4 4 3 9
4 4 Ï 20 32 5 5 3 Ï6 17
5 5 Ï 22 15 6 6 3 2
6 6 Ï 23 32 0 0 4 4
7 7 Ï 44 40 1 1 4 65 56
1 1 0 29 31 2 2 4 28 29
2 2 0 46 55 3 3 4 42 37
3 3 0 17 28 4 4 4 24 30
4 4 0 1 5 5 4 5
5 5 0 55 57 6 6 4 28 30
6 6 0 33 36 1 1 5 12 14
7 7 0 7 2 2 5 Ï9 22
1 1 1 23 16 3 3 5 42 42
2 2 1 61 41 4 4 5 29 28
3 3 1 37 44 5 5 5 20 20
4 4 1 2 0 0 6 5
5 5 1 10 12 1 1 6 12 24
6 6 1 4 2 2 6 42 32
7 7 1 43 34 3 3 6 9
0 0 2 58 37 4 4 6 46 35
1 1 2 89 44 1 1 7 26 27
2 2 2 10 2 2 7 19 20
3 3 2 36 30 3 3 7 14 16
4 4 2 4 4 4 7 30 24
5 5 2 23 32 0 0 8 35 29
6 6 2 40 31 1 1 8 8
1 1 3 26 27 2 2 8 14 11
2 2 3 38 37 3 3 8 18 8
3 3 3 54 44 1 1 9 Ï8 16

layers, which must be taken parallel to (110) or (100), where the [Ba(H2O)2]œ 
columns have their shortest distance, are penetrated by bromine ions from 
adjacent layers. For a layer in the first case every second bromine atom in 
the columns parallel to [001] belongs to an adjacent layer, and for a layer in 
the second case every second bromine column in the buckled bromine layer 
parallel to (100) belongs to an adjacent layer (ligs. 6 and 11).

In many of the structures of salt hydrates earlier investigated, especially 
the hydrated oxy-salts, the water molecule is surrounded by 3-4 neighbours: 
1-2 metal ions and 2-3 anions. This simple rule can neither be applied for 
the hydrated alkaline earth halogenides nor for the hydrated halogenides of
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Table 7. Interatomic distances between nearest neighbours (Frequency).
The atoms are numbered by means of the sequence given in Int. Tab. for 

the general position of C2/c (No. 15).

Distance 
in A

From Pauling

Ionic Radii

Radius sum
From Goldschmidt

Ionic Radii

Ba2 (2) 4.44 4.347
Bq (2) 3.41 3.30 3.39
Br7 (2) 3.49
Br6 (2) 3.52
O4 (2) 2.82 2.82 2.82
Ox (2) 3.00

Bax (1) 3.32
Ba3 (1) 3.49
Ba4 (1) 3.52
Br6 (!) 4.00 3.90 3.92
Br7 (1) 4.14
Brs (1) 4.18
Br4 (1) 4.21
Ox (1) 3.25 3.29 3.39
o5 (1) 3.27
O3 (1) 3.31
o6 (1) 3.33
O4 (1) 3.60
o2 d) 3.81
Ba2 (1) 2.82
Bax (1) 3.00
Brx (1) 3.25
Br5 (1) 3.27
Brs (1) 3.31
Br6 (1) 3.33
Br4 (1) 3.50
Br2 (1) 3.81

the transition elements.15 In the first case it is only valid for SrCh,6H2O, 
and BaCh, 2H2O. The number and positions of the atoms surrounding the 
water molecule given above for BaBr2,2H2O are not incompatible with 
the results for the group as a whole. It is not possible from the obtained data 
to say anything about the positions of the hydrogen atoms.

It should be mentioned that the direction of the [Ba(H2O)2]M columns 
2*
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Fig. 9. Barium and surrounding 
atoms. Viewed in the direction 
along the ö-axis. Shortest distan
ces solid lines. Longer distances 
dashed lines. Lower lying atoms 
have a dark hatch-ing and thin 

circumference.

6

Br HjO Ba
Fig. 10. Water molecule and sur
rounding atoms. Viewed in the 
direction along the Z>-axis. Signa

tures as in fig. 9.

Br Ba HtO

Fig. 11. [Ba(H2O)2]0C column and surrounding Br columns viewed along the c-axis. Lower layers 
have dark hatching and a thin circumference.
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[001 ] and the packing of the columns could be connected to the occurrence 
of the 2 different needle axes [001 ] and [110].

The deformation by pressure in the direction of the c-axis and the for
mation of twins are understandable if it is considered that the [Ba (H 20)2],^ 
columns lie in this direction (fig. 12). SrC12,6H2O20 shows cleavage per-

c tin p

Br Ba H,0 1Å

Fig. 12. column and surrounding bromine atoms viewed along the a-axis. Signa
tures as in fig. 11.

pendicular to the [Sr(H20)6]oc columns. It has not been possible to show 
cleavage for BaBr2,2H2O.

Table 4 gives the shortest halogen-water distances for some halogen 
hydrates. The distances for BaBr2, H2O compare well with the other dis
tances in the table. The mean value of the mean values of the distances for
each crystal gives Br—H2O = 3.29 Å and Cl—H2O =

empirical radius for H2O against halogen ions r|£o
an (^) 1-34
H2°(G) 1.33

Å for Br.

3.15 Å. This gives an

1.34 Å for Cl and 
(A)
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Table 8.

C1-H2O
Distance in A

BaCl„ H2OX...................................................................... 3.14 3.24
Bad,. 2H2O4................................................................... 3.17 3.18 3.19 3.22
SrCl2, 2H2O3.................................................................... 3.10
SrCl2, GH,O5.................................................................... 3.10 3.17
CoCl2, 2H2O21.................................................................. 3.18 3.19
FeCl2, 4 H2O22.................................................................. 3.07 3.18 3.22
A1C13, 6H2O6.................................................................... 3.1
HC1, H2O23........................................................................ 2.95
Adeninhydrochloridehemihydrate24......................... 3.12

Br--h2o
BaBr2, H2O2..................................................................... 3.29 3.32
BaBr2, 2H2O.................................................................... 3.25 3.27 3.31 3.33
11-Aminoundecanoicacidhydrobromide-

hemihydrate25............................................................. 3.17 3.38
Codeinhydrobromide Dihydrate26............................ 3.27
Strychninehydrobromide Dihydrate27.................... 3.15 3.30 3.41
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Synopsis
The electronic ground state and lowest excited states in ferrocene have been 

calculated, using the LCAO-MO-SCF method of Roothaan. The various molecular 
integrals were evaluated by means of the approximations introduced by Goeppert- 
Mayer and Sklar and by Pariser and Parr. Using the self-consistent field wave 
functions for iron, recently published by Watson, we obtained an ionization po
tential for the molecule of 10.92 eV. Low excited states are further calculated to 
occur at 5.38 eV (Ä2j), 5.44 eV (Aj.m) 5.75 eV. (Eim), 7.06 eV (Ä2«), and 9.35 eV. 
(Elu)- A correlation is made between these numbers and the measured absorption 
spectra of the compound. Finally, the magnetic features of other related “sandwich 
compounds” are discussed in the light of the bonding scheme in ferrocene.
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Introduction

Ferrocene is the trivial name for the compound Fe (CsHs^. Due to 
its high symmetry (Dsa) it should be well suited for a theoretical treatment 
in spite of the large number of electrons present. In this paper, we describe 
a calculation of the ground state and some excited states, using the simplified 
SCF-LCAO —MO theory given by Roothaan*1). A similar calculation has 
previously been performed by Yamazaki*2); however, in view of this author’s 
very short report, which makes it somewhat difficult to see the exact ordering 
of the levels, it was felt worthwhile to repeat the calculation.

Another incitement was the recent publication of the self-consistent 
field calculations by Watson*3) of the electronic orbitals of the metals in 
the first transition group. These new orbitals should be vastly superior to 
those used by Yamazaki*2), since his are based on Slater’s rules. They 
are accordingly used in this work. Furthermore, the effect of overlap has 
been taken more explicitly into account than what appears to be the case in 
Yamazaki’s paper.

In the course of our work, a paper appeared by Shustorovich and 
Dyatkina*4), treating ferrocene in a way similar to our procedure, but still 
using Slater orbitals for the metal ion. This allowed us to compare our 
results with that of the Russian authors. Due to the more contracted form of 
Watson’s orbitals as compared to those of Slater, there are significant differ
ences. A closer comparison is, however, given later.

Since an excellent review by Wilkinson and Cotton*5) deals very ex
tensively with the history and subsequent theories of the chemical bonding 
present in “sandwich compounds’’, reference to previous works does not 
appear necessary. We restrict ourselves to mention that the qualitative 
aspects of the bonding present in these compounds have been given by 
Moffitt*6) and by Dunitz and Orgel*7). The more quantitative calculations 
reported here will again be seen to differ somewhat from the conclusions 
reached by these authors.

For discussions of the theoretical aspects of our approximation, Root- 
haan’s fundamental paper* 1) should be consulted.

1*
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The Orbitals
a) The Metal Orbitals.

Realizing that the iron orbitals 1 s, 2 s, 2p, 3 s and 3 p are too contracted 
to participate in the chemical bonding, we utilize the 3 c/, 4 s and 4 p 
orbitals for this purpose. They are of the general form of a radial function 
limes a spherical harmonic

y>(n, /, m) = - /?„,z(r) YP(#,<p).
r

They are assumed to be normalized to unity. Some of their transformation 
properties in the molecular point group symmetry D^a (Fig- 1) are given in 
Table 1.

Table 1. Some transformation properties af metal orbitals in the molecular 
symmetry . co = exp. 2 % i/5.

D5d E 2C5 2 Cl 5 C2 i Designation

3 3d0 3 d0 3d0 3d0 3 d0 al!7

3dx 3dx co 3dx co23dx 3d_x 3dx ei+<7

3d.x 3d.x co_13d.x co'23d.x 3dx 3d_x eig

3d2 3d., co23d2 co_13d2 3d.2 3d., e9+2.7
3d.2 3d.2 co'23d.2 co 3d.2 3d2 3d.2 e2g

4 s 4 s 4 s 4 s 4s 4 s aig

4p0 4p0 4p0 4p0 -4p0 -4p„ a.2 u

4pi 4 Pi co 4px co24px -4p_! -4 px e +

4p.x 4p-i co'14p.x co-24p_1 -4 Pi -4p_i elw
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For the radial functions we choose Watson’s self-consistent orbitals for 
the ground state of Fe [A] (3d)6(4s)2, where [A] stands for a closed eighteen 
electronic shell. This choice instead of the Slater orbitals has the additional 
advantage that Watson’s calculations contain most of the atomic interaction 
integrals which we have to use. Watson gives no 4/> orbitals. We have there
fore assumed that the radial part of the 4p orbital is nearly identical with 
that for the 4s orbital.

While Watson used a combination of four Slater orbitals for the 3 d- 
orbital with n = 3 and ten Slater orbitals with different values of n to describe 
the 4s orbital, we had to reduce these numbers for calculational reasons. If 
Rn(JT) stands for a Slater orbital with the quantum number n and the ex
ponent equal to £, we use

F3Ä (0 = 0.5978 F3 (2.385)+ 0.4982 F3(4.77)
Bis (r) = F4p(r) = F3 (1,093125).
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The values of £ have been chosen in such a way that the orbitals are approx
imated in the best possible way in the region where the overlap takes place 
between the rings and the metal atom. The orbitals used are seen in Figs. 2 
and 3. It appears that they are much more contracted than the Slater orbitals 
used by Yamazaki(2> and by Siiustorovich and Dyatkixa(4).

The orbitals used are then

V("lg) =-^3d(r)| (3cos1 2#-l)

1 i 1
= -^4® (r) / — r [ 4 71

r I Kitt

= - R3d(r) ]/ — cos & sin & e±l(f> 
r I 8 tï

(r) 1/ ——sin2$ 1295 
r I 32 71
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4-1 I 3
V(«2«) = - P (r) 1/ 4^ cos

V’ O2*)  = - v (r) I ! sin & e±
r I 8 7t

These orbitals are shown in Figs. 4, 5 and 6 together with a carbon 'lpz 
orbital. The pictures are drawn to scale.

b. The Ring Orbitals.
In order to construct symmetry orbitals transforming correctly in the 

molecular point group symmetry D$d, we use the procedure outlined by 
Moffitt(6). The local coordinate systems upon the rings are always chosen
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fad*!)  ?/ri3d*2.)
Fig. 6. 3d orbitals and a 2p? orbital, drawn to scale.
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in such a way that the Zj-axis is parallel to the z-axis of the molecule (Fig. 1) 
Furthermore, the Zi-axes on the two rings are pointing towards each other.

Note that in a dz-7c-cyclopentadienyl compound the plane of the rings 
is not a symmetry plane of the molecule. Consequently, the orbitals of the 
rings cannot be separated into a- and %-orbitals. Nevertheless, these denota
tions will be used here in their conventional meaning.

A solution of Roothaan’s equations will produce three sets of orbitals, 
all of which are linear combinations of the metal orbitals, the cr-bonding 
orbitals, the cr-antibonding orbitals, and the %-orbitals. The lowest placed 
set, comprising ten orbitals, is tilled up. It is composed of nearly pure a- 
orbitals, but contains in addition a small portion of the metal orbitals and 
the 7r-orbitals. The second set is that in which we arc interested. It consists 
of metal- and 7r-orbitals, but may have a slight amount of cr-orbitals. This 
set is partly filled with electrons. The set with the highest energy is 
that built up mainly of antibonding cr-orbitals. All these orbitals are 
empty.

We assume here, as usual, that the first and third set are made up solely 
by bonding and antibonding cr-orbitals, respectively. Il is furthermore as
sumed that the antibonding cr-levels do not interfere with the lowest excited 
states. Consequently, the eighteen valence electrons for ferrocene (eight 
metal electrons and ten rr-electrons from the rings) are supposed to be in 
the molecular orbitals which are linear combinations of metal- and n- 
orbitals alone.

For the 7i-symmetrv orbitals we have then, according to Moffitt(6), 
calling the orbitals on one ring A, and those on the other ring B (see Fig. 1):

V(<hg) =
\! |[?’a(«2) + 9?B(«2)l ?>("2«) = |/ « tøa ("2) -^(«2)]

<P<A) = :I/2 [^(el) + 9?B(el)l 9’(^1«)=| ^tøa^i)-?^^)]

^(eîjz) =
I/2 [^(eï) + 9’B(eï) = jp 2 [9Ja(eï)-9>B(eï)]

<Ke2g) = y~[^(4)+ ^(4)] 9’(e2W)=i[/

V^ig) = / 2 + 9’(eï«) = 1/ 2 tøa(e2)-95B(<’2)l
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7^2 p (r) —

We have of course a similar combination for ring B.
The analytical form of the radial function of the carbon n orbital is 

8lven by /o^5/2

Here we have, for instance,

2 711
co = exp ——

5

1
M = 1 I “ (^o + +

9^01) “ 1[/ +

Ta^i) =
1 1 i
1/ - (7T0 + w :

?u(4) =
1 Z1 7 2
1/ ~Oo + w

=
|/ -Oo + ttT2:

c. Orthogonal Symmetry Orbitals.
The metal orbitals and the ring orbitals are within themselves orthogo

nal to each other. On the other hand, there are overlap integrals between 
those of the metal and ring orbitals which transform in the same way. Bv 
means of the given orbitals and the structural data of Seibold and Set
ton*9*,  viz. for the distances Fe-C = 2.03 Å and C-C = 1.43 Ä, we obtain by 
the usual methods* 10* the following values of the overlap integrals:

S(elÿ) 5(e2?) S(o2m) 5(e1M)
0.527 0.030 0.148 0.079 0.236 0.468

defining

S(<hg) = $ *̂(36?  0)(p(alg)dr
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and similarly for the other overlap integrals. The way the overlap takes 
place is illustrated in Figures 4, 5, and 6. Since S (u^) is very small, we take 
y>(3c/0) and ç?(rziÿ) to he orthogonal to each other. (See, however, the fol
lowing).

It is a great advantage, instead of the orbitals so far discussed, to use
two sets of orbitals which are mutually orthogonal. Since the orbitals have 
overlap only pair by pair, we easily lind for such a set of orbitals ;

2 1

with
(l + S)_1/2 + (l-S)~1/2

(l+S)-1/2-(l~S)-1/2

(l+Srl/2_(l_S)-l/2- 

(l + S)“1/2 + (l-S)“1/2

4w = Zi8= e(e2u) = 9?(e2u) 

eiu = Zi9 = ?(e2M) = 9’(e2M).

We then obtain the orthogonal symmetry orbitals, denoting the essential 
metal orbital by p and the essential ring orbitals by q ,

aig

Zi = ^(4s)

y2 = /*  (*4  d 0) = d0)

. Zs =

etC1 u
r Zio = Zz(4P1) 

[ Zn = e(4«)

a(l2u
%4 = p(4p0) - Zi2 = /w(4p-l)

k %5 = e("2u)
el u

Z13 = (?(elu)

e+ Ze = d(3dl) Xi4 = p(3d2)
eig ' Z7 = eOig) e2ff X15 = e(4g)

_ J Z8 = ^(3^-l)
e-

Zie = Zz(3 d-2)
cl<7 Zg-eOi?) e2g ' Z17 = ^(e2ff)

Energy Calculation

As shown by Roothaanh) and LöwdinI11), the minimization of the 
energy, using a molecular wave-function for the ground state which is an 
antisymmetrized product of LCAO molecular orbitals, leads to the matrix 
equation

Fc = eAc, 
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where F is the matrix corresponding to the Hamiltonian F in the Hartree- 
Fock scheme, c the coefficients in the molecular orbitals, e the energy of 
the molecular orbitals, and Zl the overlap matrix. Since, for our basis set 
defined in the previous section, Zl =1, we have

Fc = ec,

F is as written a 19 by 19 matrix, but due to the symmetry properties it 
is reduced to undermatrices: one three-dimensional, four two-dimensional, 
and one one-dimensional. As a whole, we get thus 19 orthogonal solutions, 
and the eighteen valence electrons will correspond to 9 of these.

The Hamiltonian operator F for an electron is given by

F= Hc + G,

where Hc (the core Hamiltonian) is made up of the kinetic and potential 
energy of the electron in the molecular skeleton, and G are the sums of the 
coulomb operators and exchange operators for the molecular orbital set 
under consideration.

Furthermore we have applied the Goeppert-Mayer-Sklar(12> approxi
mation and obtained for Hc

Hc= V2 + V Ug.
2 m —j g

g
In other words, IIe is decomposed into the kinetic energy and a sum of 
contributions Ug from the various nuclear cores. Finally we have thus

A2 9 7 9-7
+ [’F‘+S ~

; = o / = o
with

Z/Ç’iC1) = (e2$<?’/:(2) 9)(2) —
\ r12 /

Kj %(1 ) = (e2 Ç 9?*  (2) % (2) — dz2\ (1 ).
r12 /

The calculation then starts with an assumed linear combination of the 
metal- and ring orbitals, for instance,

Vd = Cu Z1 + C2>1 Za + Cg.i Zs

V*2  = ^1,2 Zl + C2(2 %2 + ^-3,2 %3

% = ^1,3 Zl + ̂ 2,3 Z2 + ^3,3 Z3
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1( 7’4 - C4>4 /4 + C5>4 %5
(l2u i1 7’5 = ^4,5 Z4 + ^5,5 %5

+ J| 7’6 = ^6,6 Z6 + £7,6 Z7
eU j

1 y7 = C6>7 /6 + C7>7 /7

- J1 7^8 = ^8,8 Z8 + ^9,8 Z9

J1 7’9 = ^8,9 Z8 + ^9,9 Z9

,+ J[ 7’10 = ^10,10 Z10 + f'11,10 Zll
ßl U j1 7’n = ^10,11 Zio+^nji Z11

P- J1 7’12 = ^12,12 Z12+ ^13,12 Z13
^1 U |( 7’13 = ^12,12 Z12 + ^13,13 Z13

e+ J[ 7’14 = ^14,14 Z14+ ^15,14 Z15

ei? j[ T’lö = ^14,15 Z14+ ^15,15 Z15

f 7’16 = ^16,16 Z16 + ^17,16 Z17
e2g \

1 TÙ7 = ^16,17 Z16 + ^17,17 Z17

Gu' 7’18 = Z18

e2u ; 7’19 = Z19 ■

Since F depends upon the coefficients of the filled orbitals through G, 
it is necessary to know which orbitals are used for the ground state. We 
follow most of the authors who have given qualitative and quantitative cal
culations in favouring the following lowest orbitals

T’n 7’2 > 7’4 > 7’e> 7’s> 7’io> 7’14- and y>16

as being the orbitals filled for the ground state. The remaining ten orbitals 
are then considered to be excited orbitals arc used for the construction of 
the excited states.

In our calculation we have taken the orbitals to be of the form

«iff

^1,1 Zi + C3ii /3

Z2

^1,3 Z1 + ^3,3 Z3

This assumption, which is in accord with the low value of has
also been made by Shustorovich and Dyatkina(4). Furthermore, some 
calculations which do not involve this assumption indicate that the neglected 
coefficients really are small.
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In the solution of our scheme we started with a set of coefficients nearly 
identical to Shustorovich and Dyatkina’s, and alter al most five iterations a 
set of self consistent solutions had been arrived at. Approximate convergence 
of the solutions was assumed to occur when agreement was obtained within 
0.1 per cent of the proceeding set of coefficients.

Table 2. Molecular orbitals of ferrocene. This work.

Symmetry
Filled molecular orbitals

Energies of empty 
orbitals eVForm

Energies of 
orbitals eV

0.633 p(4s) + 0.774 -20.15 27.51

p(3do) - 14.03 -

a2u 0.471 /z (4 po) +0.882 p (a2 w) - 17.77 12.39

elg
0.454 p(3dl)+ 0.891 e(e^) - 12.48 8.96

elu 0.591 p(4pl)+0.807p(et«,) - 14.74 24.64

e2g 0.898 p(3d2) + 0.440 Q^g) - 10.92 3.98

e2u — 1.43

Table 3. Molecular orbitals for ferrocene according to Shustorovich and
Dyatkina*4). The energies in parenthesis are taken from Yamazaki*2).

Filled molecular orbitals
o__ ._ « ^4- ,
\ hiihlli \

Form Energies of orbitals eV

al<7 0.49 /z(4s) +0.87p(alff) -16.05 (-16.80)

p(3d0) - 8.44 (- 8.57)

°2 w 0.10 p(4p0)+0.99g(a2M) - 13.74 (- 15.45)

el<7
0.37 p(3dl) + 0.93g(e^) -11.02 (- 8.90)

el u 0.59 p(4pl)+ 0.81 <?(eiu) -12.62 (- 7.68)

e2g 0.85 p(3d2)+0.52 p(ej?) - 6.39 (- 7.87)

Since, according to Koopman’s* 13* theorem the ionization potential is 
given as the energy of the highest occupied molecular orbital, we have 
Ip = 10.92 eV. This is considerably higher than Yamazaki’s value of 7.68 eV 
and the Russians’ value of 6.39 eV.

The only—very unreliable—value for the ionization potential found in 
the literature* 14) is based upon a mass spectrum measurement. Il is 
7.05 eV.
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Excited States
The lowest electronic configuration for ferrocene is seen to be

(aiff)2 (Q2u)2 (eiM)4 (aig)2 (e^)4 (e2ÿ)4,

where the orbitals have been written down in order of increasing energy. 
From the equations of Roothaan, lhe excited orbitals are likewise obtained. 
They are, in order of increasing energy,

(^2g) (flø) (®2u) (ela) (,flig) •

Following Roothaan We now construct the excited states of the mole
cule using these orbitals. Since an excitation of two or more electrons has 
very high energy, we only consider singly excited configurations. Brillouin’s 
theorem then ensures that, when the SCE orbitals are used, no interaction 
takes place between lhe ground- and lhe excited-states.

It is possible to construct five singlet states possessing an energy less than 
10 eV above lhe ground stale. These states occur by excitation of the eig 
and e2g electrons to the e^u and e'zg orbitals. Using the nomenclature (a->&) 
to indicate that an electron has been excited from orbital a to orbital b, 
we get the excited states

-^2 g (^2 g * ^2 g) > '^lw(^2ÿ^’^2«) ’ -^"1 w f/’2 ÿ > ^2 u ) 

^2 u 2 ÿ m ) > -^1 u (Tl U u) •

All of these states possess an energy less than the found ionization potential. 
The excitation energies are calculated using the standard methods* 1,15). We 
found with no configuration interaction between the two rElu states:

: 5.75 eV
: 7.06 eV orbitally allowed transitions

: 5.38 eV I
? orbitally not allowed transitions 

: 5.44 eV I

: 9.35 eV

^23(>2^ e2 g) ■
^1 u *Ce2^ e2u)

?2u)
^2w< e2u)

(fl g~* «2«)

Since the electric dipole vector transforms as A2m(II) and jEim(±) with 
respect to the five-fold axis of the molecule, the first two excited states are 
orbitally not allowed transitions, whereas the last three states are orbitally 
allowed transitions.
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The absorption spectrum of ferrocene shows one strong and two weaker 
band systems* 16). Denoting the molar extinction coefficient £ we find:

First band: J 2.75 eV (e = 83.46 )
I 3.1 eV (e = 50.0 )

Second band : 3.82 eV (e = 51.5 )

Third band:
f 4.77 eV (£ = 5140 )
( 6.17 eV (e = 53460)

reasonable to make the assignments

Experimental Calculated
Band 1 2.75 eV

3.1 eV
5.38 eV (Ä2ff)

Band 2 3.82 eV 5.44 eV (Aim)

Band 3 4.77 eV 5.75 eV (Eim)
6.17 eV 7.06 eV(A2M)

9.35 cV(Eim)

Discussion
The following picture results from our calculation. A system of 12 

electrons occupies the strongly bonding orbitals: aig, a2u, eiu and eig. 
The corresponding antibonding orbitals have so high energies that they are 
of no importance for the lowest excited states. The six remaining valence 
electrons then occupy the non-bonding a'lg orbital (3dz!) and the weakly 
bonding (e2<?) orbitals.

Our calculations show that no hybridization of the 4s and 3dzi orbitals 
occurs, as has been postulated by Moffitt*6) and by Dunitz and Orgel*7>. 
A calculation of the charge distribution in the molecule, performed according 
to Mulliken*17), gave the result that the iron atom has a negative charge of 
-0.69 units in the ground state of the molecule. Consequently, each of the 
rings possesses a charge of +0.35. Shustorovicii and Dyatkina*4) found 
exactly the same numbers, but with an opposite sign. The reversal of the 
sign in our calculation is due to the more contracted orbitals used in our 
work. The positive charge found upon the rings is supported by certain 
substitution reactions in the chemistry of ferrocene* 5).

The absorption spectrum of ferrocene is due to transitions between the 
ezg orbitals and the ring orbitals (charge transfer spectrum) and from the 

Mat. Fys. Medd. Dan.Vid. Selsk. 33, no. 5. 2
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e%g orbital to the antibonding orbital e2g. The twelve bonding electrons play 
a role similar to the ^-electrons in benzene; the a'lg and ezg electrons which 
are of minor importance as far as the bonding is concerned can thus be 
treated in a manner similar to the treatment of the ^-electrons in 
benzene.

All neutral dicyclopentadienyl complexes possess this closed system of 
12 electrons. These compounds only diller in the occupancy number of the 

and e2ff orbitals. Further use of the ezu (or e2g) orbital for the Co and Ni 
compound allows us to write down the electronic structures for all of the 
neutral metal sandwiches. All these structures are consistent with the 
magnetic data* 5). The three unpaired spins found in V (Cp)2 are specially 
noteworthy. Using the ferrocene orbitals of this work we have calculated 
that the ground state for V (Cp)2 should be 2E2g, but with an 4A2? state pla
ced at 0.61 eV. A slight modification of the orbitals in going from iron to 
vanadium should thus be sufficient to explain the experimental findings.

Ti (Cp)2: (12) (gQ2 5 = 0
v (Cp)2: (12) (a{!7)1(e2!7)2 5 = 3/2
Cr(Cp)2: (12) (gQ2^)2 5=1
Fe(Cp)2: (12) (al?)2(e2ff)4 5 = 0
Co(Cp)2: (12) (a^2^)4^)1 5=1/2
Ni(Cp)2: (12) (a;g)2(e2?)4(e2tt)2 5=1

The electronic states in Ti, V, Cr and Fe are in agreement with those 
proposed by Liehr and Ballhausen*18), but differ from their assignment in 
Co(Cp)2 and Ni(Cp)2.

It is interesting to not that the spectra of the other sandwich compounds 
have a close resemblance to that of ferrocene* 16). The view that the a'lg and 
e-2g electrons are the “chemical electrons” makes this fairly understandable, 
and is at the same time in agreement with the basicity features of these 
compounds* 23).

Even though the exact numbers in a semi-empirical theory as that out
lined above must be considered with some caution, we believe that the essen
tial features in the electronic structure of ferrocene have been given correctly 
here.
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Appendix: Evaluation of Integrals
1) Evaluation of the “core” integrals.

— 712
We have Hc =------V2+ + Ly,

2 m r

where UMe is the potential from the metal nucleus and the closed argon 
shell, while J7r is the contribution from the 10 carbon nuclei.

r
Now, the diagonal matrix elements for the metal orbitals are called 

a(3(7O), a(3(71) . . . and those for the ringorbitals <x(aig), a(eiÿ) .... The 
non-diagonal matrix elements are called ß(aig), /3(eiÿ) and so forth. We 
have, for instance,

a (3 (70) = y*(3(7O)  (3(70) dr

ß (aiff) = jj y*(±s)H c ip(aig) dr.

For the a(3(70) integral we get, by expanding,

, f 2 Ia (3dO) = \ yr:: (3(70)-------V2+L'Me ^(3(70)(7r
I 2m x )

+ *̂(3(70)  Ur ip (3(70) dr
r

or
a (3(70) = aMe (3 (70) + ar (3 (70).

r

The integrals of the type aMe(3(7O) can be estimated from the spectrum of 
iron with the help of Watson’s calculations<3). We get

aMe(3d)= — 5.554 a.u.
aMe(4s) = -2.654 a.u.

aMe(4P)=-2-474 a u-

The integrals of the type ar are evaluated treating Ur as the potential coming 
from a % electron with opposite sign(12,20). The integral is then seen to be a 
usual Coulomb integral, the evaluation of which is given later. We get in 
atomic units a.u. = 27.210 eV

a(4s) a(3(7O) a(3(71) a(3(72) a(4j>0) a(4pl)
-5.057 -8.260 -8.250 -8.223 -5.032 -4.798

2*
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In the evaluation of the integrals a(ai0 etc. we write for //c

h2 4 4- +l’»+I l'r +Z ,-III r = 0 r = 0

where Uo, L\ . . . U4 arc the potentials from ring A, and Uq . . . U4 the po
tentials coming from ring B. Using a value of

, -■ I & , I\ Tro \ - —V2 + I 0 J.Todr = - 0.41 46 a.u.* I 2 m J
according to Mi lliken, and the tables by Parr and Crawford*19), and 
furthermore assuming a value of the “resonance integral’’

ß = 7iüHc7t1dr = -0.0878 a.u., we get

a(«i?) = a(«2w) = -4.623 a.u.
“(hy) = a(eiw) = -4.502 a.u. 
a(e2ff) = «(e2M) = -4.305 a.u.

Integrals of the type ß(l) = \'ip*(l)  Hc (p(l)dr are treated in the following 
way* 20). By symmetry, we must have

0(0 = I 10 \ V>*(0  Hc nQdi;.

_ 1 _
With 71q = Sr0nr> an(l since ß(l) is less than the corresponding

2 r
o(l) values, we can put

ß(l) = j/10 J dr.

We have further

I A2 2 1
I ~ V + UMe ip(l) = <xMe(l)y>(l)I 2m I
I f<2 , I -
I ~ 0 I ^0 = ^2 p •

By expansion we then get

0(0 = 9 S(0 4 aMe(0] + g |/10$ *̂(0  [^Me+Uo] jr0C?T

, 9

+ |/to \ *̂(0  A ^r^0rfT-
' r = l
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The evaluation of the last integral follows from what has been said previously, 
hut the calculation of the second integral requires a rotation ot the coordinate

Fig. 7. Definition of local coordinate systems, xa, ya, za and xb, yb, zb- a> = 36?8.

systems. Transforming the coordinate systems as indicated in Fig. 7, we 
get, for instance, for the transformed metal orbitals:

V>(3<72.) = (cos2 co-i sin2 co) [3d22]a-||/3sin2co 13d;r2]a

+ -/3 sin2co [3^.-^]«

^(3c/x2) = — j/3 sin2co [3c/22]a +cos2co [3da.2]a ——sin2co

V’CSc/yz) = COSCO [3 dyZ\a- sin co [3c/a.Ja 

^(3^.-^) = ^|/3sin2co [3d22]a+ | sin2co [3<k2]a

+ -(1 + cos2co) [3ck._y.Ja 

^(^dxy) = cosco [3da.y]a + sinco [3c/ÿZ]ff 

y>(4s) = [4s]a

V>(4/>2) = -sinco[4pja +cosco [4p2]a 

V<^Px) = C0SCÜ [4pJa + sinw [4^1a

= [4jPy]a
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The transformation of the 2pz orbitals in the (xb yb zb) coordinate system 
proceeds exactly in the same way.

The remaining integrals are now calculated with the help of these trans
formed orbitals, using a two-center potential ; a charge of + 8 upon the metal 
atom and a charge of + 1 on the carbon atom. In this approximation, we 
get

ß(alff) ß(el(ß) ß(C2g) ß((12u) ß(eiu)
— 3.086 au. -1.143 au. -0.603 au. - 1.475 au. - 2.629 au.

2) Evaluation of two-electron integrals.
The two-electron integrals occur in the Roothaan scheme in the evalua

tion of the matrix G, whose elements are given by

m ( i 1 1
Gpq = JE/hs I I rSl - 2 I J ’

where
e2l/)<7 I = J \ ZpX1) Z* (2) ) Zs(2) drr dr2,
r12

and 

are the elements of the charge and bond order matrix.
Utilizing the symmetry properties of %r and %s and taking the “zero

differential overlap’’ as a critérium for the non-vanishing of the matrix 
elements* 20), all the matrix-elements in Gpq can be reduced to “Coulomb” 
integrals. Using the method of Roothaan*21) these were evaluated in a 
spheroidal coordinate system. In this way, all the integrals are reduced to 
linear combinations of so-called basis integrals. They were evaluated in the 
following way. First, one of the electronic coordinates was integrated ana
lytically. The remaining function was then integrated numerically. Use was 
made of the molecular zeta function of Coulson and Barnett*22); we want 
to express our sincere thanks to Professor Coulson for having placed his 
tables of this function at our disposal.

Our final result for the nine Coulomb integrals is

J(3(/0,2/R)) =0.2706 a.u. J(4.s-,2p0) =0.2403 a.u.
J(3d± 1,2/jO) = 0.2696 a.u. J(4p0,2p0) =0.2559 a.u.
J(3d±2,2p0) = 0.2669 a.u. A4/)± l,2p0) = 0.2325 a.u.

1 a.u. = 27.210 eV.
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Synopsis
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I. Introduction

I The present experimental investigation is concerned with the energy loss 
and straggling which protons and deuterons suffer when they penetrate 

foils of various elements.
The particles were accelerated in the 4.5 MV electrostatic accelerator at 

the Institute for Theoretical Physics in Copenhagen. A magnetic spectro
graph was used as a precision instrument for the energy determinations.

In the energy range below 2 MeV numerous stopping power investigations 
have been carried out previously, but in the range from 2 to 10 MeV the expe
rimental data are rather scarce. At higher energies (> 10 MeV) many investi
gations have been performed by means of cyclotrons. However, in general, the 
latter measurements are made only at the fixed energy which the cyclotron 
in question yields, and consist in a determination of the stopping power 
of various elements relative to a given standard. Air or aluminum are often 
used as such standards* 6-II. * 13) ; this is unfortunate since, in particular for air, 
the results obtained from different experiments vary considerably. For this 
reason, it is difficult to combine the various results to an accurate descrip
tion of the stopping phenomenon.

II. Summary of Theory

The penetration of charged particles through matter has been studied 
theoretically by many authors. The topic has been surveyed by Niels 
Bohr<4> who, in particular, has discussed the conditions under which the 
various approximations to the problem can be applied.

The slowing down of a proton or a deuteron is caused by electronic 
collisions in which the energy is transferred to individual electrons in the 
atoms, resulting in atomic excitation and ionization processes. In a nuclear 
collision, the momentum is taken up by the target atom as a whole and, 

1*

The present measurements are performed on metal foils of beryllium, 
aluminum, nickel, copper, silver, and gold, and the investigations cover 
the energy range from 1.5 to 4.5 MeV.
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because of the much larger mass involved, such collisions do not contribute 
essentially to the energy loss. They do, however, give rise to the multiple 
scattering which the particle suffers by the penetration, whereas the elec
tronic collisions are of minor importance for this effect.

The energy loss. For the bombarding energies employed in the present 
investigation, the electronic collisions correspond to small values of the 
collision index z, i. e.,

where Zxe and v are the charge and velocity, respectively, of the bombarding 
particles. I nder such circumstances the Born approximation can be em
ployed, and on this basis BethiT*  has shown that the average energy loss 
dE per range interval dR for non-relativistic particles is given by

dE
dR

47ie4Zi
nw2

L = !<>ge
I 2 mv2 ] 
rn

(2)

In these expressions, e and in are the charge and mass of an electron, 
whereas N represents the density of the atoms in the target material which 
has the atomic number Z-2.

The energy I is an average over the excitation and ionization energies 
for the electrons in the target atoms. The average involves only those elec
trons which contribute to the stopping, i. e., electrons which have orbital 
velocities smaller than or comparable to the projectile velocity v. This 
implies that I will depend on the projectile energy E, unless

E » —/o Is for all s, (3)

where AjM0 is the mass of the projectile, Tf0 the nuclear mass unit, and Is 
are the ionization energies of the various electrons in the atoms.

For very high (but non-relativistic) energies, where these conditions are 
all fulfilled, Blocii(3> has shown that employment of the Thomas-Fermi 
statistical model of the atom leads to an average excitation potential

(4)

where /() is a constant of the order of the Rydberg energy R = 13.6 eV.
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For the A-electrons the inequality (3) requires that even when bombarding 
an element as light as aluminum, the proton energy should be larger than 
4 MeV. This means that, in the present investigation, the /^-electrons of the 
heavier elements do not yield any significant contribution to the stopping, 
and that for aluminum one has to apply a correction to the simple expres
sion (4) corresponding to a velocity dependence given by

7 = Z2Z0 exp [ > (5)

where 70 is the constant found at higher energies. Bethe and Walske<2> 14) 
have calculated this CK-correction and they find for low bombarding ener
gies that CK is negative, whereas for energies in the transition region (e. i., 
corresponding to an equality sign in (3) for the A’-shell) it passes through 
a positive maximum before it goes to zero when (3) becomes valid.

For lower energies or heavier elements similar corrections would have 
to be applied also to other shells, but such calculations are only available 
for the A-shell(15). However, it has been shown byLiNDHARD and Scharff*11-12> 
that, to the extent the Thomas-Fermi model can be applied, one should 
expect the function L to be dependent on v and Z% in such a manner that

and (6)

It is evident that this is true for Bloch’s solution for large values of x, where

J 2 nw2 I 
L = °ge | “ZÜÔj °ge (7)

but (6) holds also in the general case where the function L has not been 
calculated explicitly.

The result that L to a first approximation depends only on a single 
parameter is of great value, as it makes it possible to present the experi
mental data in a comprehensive form which is well suited for interpolations 
to other elements than those actually measured.

The energy straggling. As a consequence of the statistical nature of the col
lision processes, not all the particles in a mono-energetic beam will lose the 
same amount of energy when they penetrate a foil of a definite thickness A R.
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The standard deviation £? of the energy distribution is called the energy 
straggling. The main contribution to Q comes from the more violent col
lisions by which the electrons are given kinetic energies close to the maxi
mum energy 4 mv2 which a free electron can obtain in a collision with the 
projectile. This energy is large compared to Is when the inequalities (3) 
are satisfied, and under these conditions one finds (ref. 4))

For lower energies where (3) is no longer valid, Lindhard and Scharff*11) 
have shown that ß can be expressed in terms of the function L which, ac
cording to equation (2), determines the average energy loss. They find that

P2 = Zx24 n e4 Z2 A- d R- L { x } 

for L { x ) 1 .

(9)

A smooth transition between the two approximations is expected to take 
place for L{x}-2, but a more precise estimate is not available in this 
region.

III. Experimental Procedure

A thin layer of gold deposited on a carbon foil was bombarded with, 
e. g., the proton beam. The protons scattered at a backward angle of 145 
degrees were passed through a broad-range magnetic spectrograph* 8) and 
recorded by means of a photographic emulsion placed along the focal 
plane. The plate was exposed twice, first with a foil inserted in the primary 
beam and then, immediately afterwards, with the foil removed. As an ex
ample, Fig. 1 shows the corresponding groups of protons scattered from 
the gold layer. Protons scattered from the carbon backing have much lower 
energies <at backward scattering angles, and do not disturb the measurements. 
The narrow peak obtained without the stopping foil shows that the energy 
spread of the primary beam is less than ±0.1 percent. The peak obtained 
with the foil inserted in the beam is shifted towards a lower energy and 
has an increased width. These effects are caused by energy loss and stragg
ling in the stopping foil.

The two exposures corresponded to the same number of primary pro
tons, as measured by collecting the beam in a Faraday chamber behind 
the carbon foil and recording the accumulated charge by means of a beam 
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integrator. The total number of tracks in each of the two peaks should 
thus be very nearly equal. It is determined by the thickness of gold scatterer 
and the bombarding conditions. In most of the exposures one aimed at

Fig. 1. Spectrum of protons scattered from a thin gold target, a) without foil and b) with a 
3.3 mg/cm2 Au-foil inserted in the 3 MeV proton beam. The spectrum was obtained by means 

of a magnetic spectrograph and the particles were recorded in a photographic emulsion.

about 2000 tracks, and this number could be obtained in a few minutes 
by collecting a charge of the order of 10 micro-coulomb in the Faraday 
chamber.

Determination of the energy loss and straggling. The spectrograph was cali
brated by recording a-particles front 84Po210 (5) at various field strengths, as 
measured by a nuclear induction Gauss-meter. By means of the calibration 
curve the average energy can be determined for each of the two peaks in 
Fig. 1, and from these energies the mean energy of the particles in the inve
stigated foil can be computed as well as the average energy loss. This invol
ves a correction for the recoil energy lost in the gold scatterer (1.8 per cent 
for protons scattered through 145 degrees) and, strictly speaking, one should 
also take into account that the energy scale is non-linear; however, the 
widths of the peaks are so small that this effect is quite negligible.
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In a similar way, the energy straggling may be obtained from the stan
dard deviations of the two distributions. The width of the broad curve is 
due mainly to the straggling phenomenon and the distribution may be 
expected to be approximately Gaussian. By plotting the integral distribution, 
i. e., the area II ( s ) indicated in Fig. 2, one should therefore obtain an 
S-shaped curve with a steepest slope proportional to the reciprocal of the

Fig. 2. Determination of the standard deviation of a Gaussian distribution by means of ‘probits’ 
(cf. section III).

standard deviation. In order to exploit all the points for the determination 
of this slope, the curve can be transformed to a straight line with the same 
slope by plotting the so-called probits (ef. Fig. 2) which represent a linear 
transform of the integrated Gaussian (cf., e. g., ref. 9).

From the standard deviation 12 2 determined in this way for the energy 
distribution corresponding to the broad peak, one finds the energy stragg
ling Ï2 itself by subtracting the contributions from other effects. The measured 
distribution results from a folding of the straggling curve with the curve 
which would be obtained if the straggling phenomenon was absent. For
tunately, the standard deviations add up geometrically, i. e., if we denote 
the standard deviation of the latter curve by -0(), then

ß2-ß22-fi02. (10)

Hence, the corrections have a relatively small influence and for this 
reason the exact magnitude of 120 is not important. One contribution to £?0 
comes from the finite resolution of the spectrograph and the analyzing 
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magnet of the accelerator. H is given by the standard deviation of the 
reference curve (‘a’ in Fig. 1) and it can, for the present purpose, be esti
mated sufficiently well from the directly measured half-width.

Another contribution to £?0 comes from the multiple scattering in the 
stopping foil which smears out the beam spot on the target because of the 
spacing 1) needed between foil and target (I) =1.8 cm, cf. Fig. 3). The

Fig. 3. Sketch of the spectrograph (not to scale), showing the broadening effect caused by mul
tiple scattering in the stopping foil. The size of the effect is determined by the distance ‘D’ be
tween foil and target and it is further magnified 1.44 times by the spectrograph. Two typical 

orbits are indicated.

magnitude -Qs of the contribution from this effect was not measured directly, 
but it can be estimated from earlier measurements (cf., e. g., ref. 10) and 
from theory by the following considerations.

The standard deviation or for the projected angular distribution is given 
by

g__Z1Z2 .V dfilogj/i})1'2
|/2 E

where n is the average number of nuclear collisions which a particle en
counters by the passage of the foil. Hence E>s can be calculated from the 
expression
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Q = . p . j) . G
s ds
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where F = 1.44 is the (constant) magnification and

(13)

is the reciprocal energy dispersion of the spectrograph.
Since for most of the exposures the magnetic field was adjusted to give 

a radios of curvature q - 30 cm, it is found from equations (11), (12), 
(13), and (8) that

• 10-2 l/Z2~loge{n}, (U)

if /.{.v}~l. Hence, the correction factor is nearly independent of AR 
and E which enter only through the logarithmic term under the square 
root. In accordance with the theory it is found experimentallyO°) that, for 
foil thicknesses of the order of mg/cm2 and energies of the order of MeV, 
the square root decreases from a value of 15 for gold to 12 for copper, 
whereas for aluminum it is expected to be as low as 9. Because of the geo
metrical addition of the standard deviations, these values imply that even 
in the case of gold the correction to ï?2 amounts only to approximately 
8 per cent.

In order to ensure that the actual Qs correction was not underestimated, 
a few exposures were made with a target where the thin gold layer was 
confined to a narrow line, only 1 mm wide. A scatterer of this shape acts 
as a line source in the spectrograph even when a foil is introduced in the 
beam, and hence in this case no correction is needed (cf. section IV). 
The energy straggling for the observed particles should be the same in the 
two geometries since the stopping and scattering in the foil is caused by 
two different processes (cf. section II) and therefore not correlated.

In addition to the above mentioned contributions to the widths of the 
observed peaks, one has to consider the effect of inhomogeneities in the 
investigated foils, and the degree of homogeneity of course depends on 
the technique by which the foils have been produced.

Preparation of the foils and determination of their thicknesses. The main 
source of error in stopping experiments comes from the difficulties 
involved in producing clean and very homogeneous foils. Great care is 
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needed in the preparation, and it is essential to check the homogeneity 
and cleanness of the foils sufficiently well to make the experimentally 
determined weight per unit area an accurate measure of A /?.

The foils were weighed on a balance which could be read with an ac
curacy better than ±l()//g. The absolute calibration of the balance was 
checked against a standard weight. The lightest foil weighed about 3 mg 
and the relative accuracy of the weighings was therefore better than 1 per cent.

The areas were computed from the linear dimensions of the foils which 
for the larger ones were measured by means of a movable microscope table 
calibrated to better than 1 () 2 mm. The measured areas were about 1 cm2 
or larger, and the relative uncertainty was less than 1 per cent.

The beryllium foils were not made with the present experiment in mind. 
They were rather thin and it was therefore necessary to use several layers 
together. The foils had a somewhat irregular shape, and for this reason the 
areas were determined by making blue prints on a homogeneous piece of 
paper. The figures were cut out and weighed relative to a piece of known area.

The aluminum foils were very uniform, rolled foils with a stated purity 
of 99.6 per cent. The impurities were mainly iron and silicon and the cor
rection to the stopping power was therefore negligible. The nickel foils 
and some of the copper foils were rolled foils, produced commercially. 
The stated purity was better than needed for the present experiments.

The remaining copper foils, and all foils of silver or gold were made 
by evaporation in vacuum from a heated tungsten ribbon. The metal was 
evaporated onto a glass plate which had been prepared in the following 
way. First it was cleaned in sodium hydroxide and then a solution of poly
styrene in chloroform was poured over it. After the chloroform had eva
porated, the plate was left with a thin coating of polystyrene which was 
used as a basis for the evaporated metal. By means of a razor blade, the 
metal foil was then cut into rectangular pieces, each approximately 1 cm2, 
which is the size of the standard frames used. Because of the polystyrene 
film, the foils came off the glass quite easily when a drop of water was ad
ded. Subsequently, the polystyrene was removed by dissolving it in chloro
form. The areas of the rectangular pieces were measured both before they 
were taken off the glass and after the final preparation. They showed no 
tendency to shrink if the cuts were not made before the foil had reached 
room temperature after the evaporation.

The purity of the evaporated foils was checked by employing the same 
material for production of a very thin evaporated target from which protons 
could be scattered elastically and measured in the spectrograph. Each 
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contaminant gives rise to an elastic peak in the spectrum, and from the 
height of these peaks very small relative concentrations of the impurities can 
easily he determined. It was found that the gold did not contain any impu
rity large enough to justify a correction. Some of the silver foils contained 
1.3 per cent of copper and this implies a correction to the energy loss of 
approximately 0.3 per cent, which is somewhat less than the estimated 
uncertainty of the measurements. The correction was included because the 
deviation was one-sided.

The foils were selected with respect to homogeneity by weighing neigh
bouring foils from the same evaporation, and if the deviations in thickness 
exceeded 2 per cent, the foils were not used. In order to reveal more loca
lized inhomogeneities of the foils, investigations were made by means of a 
small range-meter, similar in construction to that described by Chilton 
et aid7). A thin Po-source was placed on a movable table below a diaphragm 
with a small hole, comparable in size to the 1 mm2 beam spot of the acce
lerator. The foil to be investigated was placed on the diaphragm. Some of 
the a-particles emitted from the source passed through the hole, penetrated 
the foil, and entered a Geiger counter. A plot of the counting rate versus 
the vertical position of the table yielded a well-defined half-intensity point 
corresponding to the range of the particles. In this position variations in 
the thickness of the foil were directly indicated by a change in counting 
rate when the foil was moved with respect to the diaphragm so that dif
ferent parts of the foil were exposed.

The method was very sensitive and the foils were discarded if the mea
sured thickness fluctuations exceeded 1.5 per cent. From the measurements 
one could extrapolate to the most probable value for the thickness at the 
center of the foil where the accelerator beam passed through in the actual 
experiment. The range-meter could not be used for some of the thicker 
foils because the range of the Po a-particles was loo short. The homogeneity 
of these foils had to be checked in a more laborious way by bombarding 
them with the accelerator beam penetrating in several different positions. 
If the energy loss varied more than 2 per cent, the foils were discarded.

IV. Results and Discussion

The specific stopping power. In Figs. 4 and 5 the measured energy losses in 
KeV per mg/cm2 are plotted as a function of the energy in MeV of the pro
tons and deuterons, respectively. Measurements were made on 4 to 5 dif
ferent foils of each of the metals indicated, the thicknesses ranging from
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Fig. 4. Stopping powers for protons. The curves are experimental and drawn only in order to 
facilitate energy interpolations.
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0.5 to 3.5 mg/cm2. The uncertainty of the individual measurement is caused 
mainly by foil inhomogeneity, and is in the range from 1 to 3 per cent. 
The most reliable results were obtained for Al and Ag, the corresponding 
foils being particularly homogeneous. The measurements on Be were made 
only once, because the few foils available broke when they were taken out 
after the first exposure; the majority of the other measurements were re
peated.

Figs. 4 and 5 are not well suited for interpolating the measured stop
ping powers to other elements. As mentioned in section II, it is more con
venient to plot the data as a function of the parameter

MeV > (15)

where EMeV is the bombarding energy in MeV. As the measured thicknesses 
are given in units mg/cm2, it is advantageous to introduce

dt = A2M0NdR (16)

in the theoretical formulae. Equation (2) may then be rewritten in the form

where
7T |/2c2h 
m J/ Mq

= 14400
(KeV)3/2
mg/cm2

(17)

(18)

A plot of the experimental values of the quantity on the left-hand side 
of equation (17) as a function of x given by equation (15) should therefore 
give points falling on a single curve for all elements and projectiles. Since 
the measured dEfdl values are roughly proportional to (EZ2) 1/2, such a 
plot allows all the points to be presented with comparable precision, as 
shown in Fig. 6.

Within the experimental uncertainty, there are no differences between 
corresponding proton and deuteron points for a given element. This is not 
surprising since the mass is of negligible importance when the projectiles 
are very much heavier than the electrons. The points for different elements 
also fit in rather well with each other, although for the heavy elements 
there are deviations of a magnitude comparable to the experimental un
certainty. It is not clear whether the deviations are significant or not; on
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Fig. 5. Stopping powers for deuterons. The curves are experimental and drawn only in order 
to facilitate energy interpolations.

the other hand it would not be surprising if minor deviations occurred, 
since the Z2 dependence is inferred from more specific assumptions. How
ever, relatively safe interpolations to the stopping power of other elements
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0.5 1 5 10 50
Fig. 6. Plot of the stopping power data contained in Figs. 4 and 5. According to theory, all 
points should fall on a single curve (cf. section IV). The factor in the square bracket does not 
depend much on the target material and is close to 1 for protons. The theoretical curves re

present equations (2), (4), and (16), corresponding to the 70-values indicated. 



Nr. 6 17

can be made from Fig. 6 in the investigated range of .r-values. Ward Wha- 
ling(16) has compiled most of the existing data from stopping power measure
ments in the energy range below 2.5 MeV, as well as the data for gold in
vestigated previously in the range from 1.5 MeV to 5 MeV; on this basis, 
he has extrapolated the results up to 10 MeV by means of the theoretical 
formulae. The present results agree well with the curves given by Whaling. 
In a few cases, the new points indicate slightly lower values, but the dif
ferences are less than 3 per cent.

In Fig. 6 the experimental data are compared with the theoretical ex
pressions (4) and (2), corresponding to Z0-values of 10 eV and 13.6 eV. 
As explained in section II, the average excitation potential must at low 
bombarding energies be smaller than the constant value (4) which is ap
proached at higher energies. From the figure it is evident that this is true, 
and the effect is shown more quantitatively in Table A, where the magni
tudes of I have been evaluated at the various energies by means of equa
tion (2) and the experimental curves in Fig. 4.

Table A. The average excitation potential I as derived from a comparison 
of formulae (2) and (16) with the experimental stopping power curves in 
Fig. 4. The proton energy is denoted by Ep, and A I represents the estimated 
uncertainty on I. The last row gives the ratio between the value of I al 
E — 4 MeV, and the atomic number Z2 of the element in question (cf. eq. (4))

EP Aße 7A1 ^Ni 7Cu ^Ag ■7 Au

MeV eV eV eV eV eV eV

1.5 185 365 377 556 866
2.0 56 184 368 371 572 937
2.5 180 371 379 576 974
3.0 56 180 371 382 588 995
3.5 175 378 378 587 1010
4.0 56 175 373 371 583 1000

Al ±4 ±3 ±8 ±8 ±7 ±20

14.0 13.5 13.2 12.8 12.4 12.7

It is interesting to note that the variation of I for Al seems to go in the 
opposite direction. This is in agreement with the fact that, for high energies, 
various investigators<13) have found relatively low values, viz. /A1—163 eV. 
The sign of the effect may be understood (cf. section II) by considering 
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that the CK-correction in the present range of bombarding energies obtains 
its (positive) maximum value for elements in the neighbourhood of Al, as 
shown in Table B. From the table it appears, however, that the calculated 
CÄ-correction does not suffice to account for the variation of the ZA1-values 
displayed in Table A.

Table B. Effect of the CÄ-correction for Al. The correction has been estim
ated from the curve given by Walske(14).

yuncorr
yAl

7corr
7A1

MeV eV eV

1.5 0.3 185 181
2.0 0.6 184 174
3.0 0.9 180 168
4.0 1.0 175 162

The energy straggling. If the foil thickness / is introduced in accordance 
with equation (16), the relations (8) and (9) for the energy straggling £? 
can be written in the form

where

(19)

(20)

In Fig. 7 the experimental values of the quantity on the left-hand side 
of equation (19) are plotted as a function of x. However, the plot does not 
include the ^-correction. The magnitude of this correction can be estimated 
by means of the equations (11) to (14), and for each element the corre
sponding ordinate correction is indicated in the figure by the length of the 
arrows. The few exposures made with the ‘line’ target described in section 
HI are consistent with the corrected values, but the points scatter too much 
to allow a quantitative determination off/,. With the ^-corrections included, 
the data conform quite well with theoretical expectations represented by 
the two curves. They are drawn in accordance with equations (19) and
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Fig. 7. Plot of the straggling data. The symbols are the same as in Fig. 6. The points have not 
been corrected for the scattering effect discussed in section III, but the magnitude of these 
corrections is indicated for each element by the length of the arrows. The curves represent the 
theoretical expressions (19), with the values of L (x) derived from the experimental points in 

Fig. 6.

(20), and with L (æ) derived from the experimental points in Fig. 6, i. e., 
from the measured stopping powers.

Evidently, the points in Fig. 7 scatter too much to establish with certainty 
the expected decrease for small x-values, but it is difficult to obtain more 
reproducible data because of miscroscopic inhomogeneities in the foils. 
One variety of the commercial Al-foils, e. g., yielded rather large /2-values, 
but these foils were only shiny on one of the sides and could therefore be 
discarded as far as the straggling measurements were concerned. Also the 
Be-foils were too poor to justify an evaluation of the straggling from the 
data obtained; Be is therefore not included in Fig. 7.
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Synopsis
Dissociation of diatomic molecules is considered as the escape of a classical particle from 

a potential minimum due to its Brownian motion. The criterion for reaction is taken to be 
annihilation of the particle at a certain energy. For this model the Kramers equation is set up 
and solved exactly for potentials of the form V = C | r |w, and the rate constant for escape from 
the potential minimum is found. It is also shown how the rate constant may be obtained from 
a variational principle, and as an example of this method the rate of escape from a Morse 
potential is found. The results obtained agree very well with machine calculations. Finally it 
is attempted to justify the Kramers equation in the limit of weak interaction by deriving it 
directly from the Liouville equation. It is shown that the equation obtained deviates signi
ficantly from the Kramers equation, except for the case of a harmonic oscillator molecule. IL 
is remarkable, however, that rate constants obtained in this way for the rate of escape of a 
particle from very deep potentials of the above mentioned simple form are almost identical 
with those derived from the theory of Kramers.
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Introduction

In recent years there has been a renewed interest in stepwise activation 
theories of chemical reactions1-5 resembling the Brownian motion theory 
originally proposed by Kramers6. In such a theory the reading molecule is 
considered as an effective mass point which performs a Brownian motion 
in an external potential due to the coupling to a thermostat. When the particle 
attains a sufficiently high energy a chemical reaction may occur, which in 
these theories is pictured as the crossing of a certain surface in phase-space, 
or simply as an annihilation of the particle as it reaches a certain energy.

Due to the Brownian motion of the particle in phase space the probability 
density function for the particle will satisfy a diffusion equation when the 
problem is treated classically, or a discrete analogue of a diffusion equation 
when it is treated quantum mechanically. It is generally assumed that the 
diffusion equation derived by Kramers using the semiphenomenological 
theory of Brownian motion is correct. So far it has only been possible, 
however, to compare it with more exact calculations in the case of a particle 
moving in a harmonic oscillator potential, since only in Ibis case has it been 
possible to set up the equations. In the harmonic oscillator case, and with 
the assumption that the density in phase space does not depend on the 
angle variable of the particle, there is complete agreement between the 
classical equation of Kramers6 and the equation derived by Bak, Goche and 
IIexin7 for the case of the. Brownian motion of an oscillator weakly coupled 
to a crystal lattice. Furthermore, for this case the quantum mechanical 
theory of Montroli. and Shuler1 also reduces to the Kramers equation 
in the limit Æ -> 0.

In the case of a harmonic oscillator potential it is also comparatively 
simple to solve the diffusion equation, at least when the reaction is considered 
as an annihilation of particles. As is usual for such calculations, the rate 
constants obtained for the dissociation of diatomic molecules are far too 
small. One of the reasons for this is undoubtedly the use of the harmonic 
potentials, since one would expect that an anharmonic potential would speed 

1*  
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up the dissociation reaction. Although the neglect of anharmonicity in the 
potential is by no means the only reason for the discrepancy between theory 
and experiments, we shall here be concerned solely with this difficulty and 
disregard such questions as the relative importance of hard core collisions 
and weak interaction collisions, and the even more elusive question of 
whether it is permissible to use intermolecular potentials, derived by using 
the Born-Oppenheimer approximation, under the conditions which prevail 
in a molecular collision.

Throughout this paper we shall therefore assume that the reading mole
cule, which we for simplicity shall think of as a diatomic molecule, is in 
weak interaction with a thermostat. The thermostat which is assumed to be 
in equilibrium may be a gas or a crystal (phonon gas). The criterion lor 
reaction is that the molecule reach a certain energy, i. e., the reaction is 
pictured as an annihilation at a certain energy level.

For this model we derive the Kramers diffusion equation in phase space 
(or rather energy-time space) and solve it exactly for oscillator potentials 
V=C|r|”. For arbitrary intermolecular potentials the equation can be 
solved approximately be a variational method. As an example of the use 
of this method, we find the rale constant for escape from a Morse potential.

Finally we attempt to justify the Kramers equation for the above model 
bv deriving it directly from the Lionville equation, using the asymptotic 
lime integration developed by Bnoir and Piugogine12.

Due to mathematical difficulties we limit ourselves in Ibis ease to con

sidering the oscillator potentials V= | r |, F=-yr2 and the square-well 

potential, V = 0 for | r | < Z/2, V oo for |r| > Z/2. These potentials have the 
common feature that when r is expressed in terms of the action-angle va
riables, ./ and r can be factorized, i. e. r = r0 (./) 0 (a).

I n order to be able to compare the coefficients C, y and / for these potentials 
one must make a convention about the different values of r at which dis
sociation occurs. We shall make the assumption that the value of /■ at which 
dissociation occurs is the same for the three potentials. We therefore have

('/ = Dy and I1 = 2 l)jy

where 1) is the activation energy.
fhe most remarkable feature of the exact theory is that it gives practically 

the same results for the rate of escape of a particle from a potential as does 
fhe theory of Kramers, in spite of the fact that the two equations for the
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lime behaviour of the density in phase spaee are completely different. We 
cannot, however, agree with the statement made by Mazur15 that Prigogine’s 
theory confirms the phenomenological theory of Kramers. The agreement 
which one obtains with respect to rate constants indicates, however, that as 
long as only weak interactions are considered, the conceptually much simpler 
theory of Kramers which has later been elaborated by Brinkman16 may be 
useful when considering the influence of anharmonicilies, or when investigat
ing the validity of annihilation as criterion for reaction.

Both the theory of Kramers and the more exact treatment based on 
Prigogine’s integration of the Liouville equation show that for simple 
potentials one gets the result that the rate constant is

k cc

which is precisely the result one would expect from a correspondence argu
ment assuming the result

k = ßl) e~ßD

to be valid for the harmonic oscillator where the energy levels are equally 
spaced. Both theories therefore show that anharmonicities which decrease 
the frequency of vibration increase the rate of dissociation, in qualitative 
accord with the experimental findings. The aim of the present paper is, 
however, not to compare theory and experiments, but solely to study how 
the problem of anharmonic molecular potentials can be treated within the 
framework of a weak interaction theory.

Kramers’ equation

We shall start by giving a derivation of the Kramers equation for diffusion 
in phase space for the case of small viscosity, i. e., weak interaction between 
the particle, the Brownian motion of which we consider, and the thermostat. 
The derivation takes its starting point in the Fokker-PIanck-equation for 
the phase-density function ø = ø (g, p, t), defined in the phase-space for 
the particle. In the case of a particle exposed to a force derived from an 
externa] fiele! of force V(g) in addition to the stochastically varying force due 
to the surrounding medium, the equation has the following form6.

p dø dVdø 
m dq dq d p (1)
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turns out to be practical to change the variables 
motion of the particle from (c/, p) to action-angle

For our purpose il 
specifying the state of

, which depends only on the energy, and a defined

by da. = (odt win*re co 
have therefore

! 71 (IE
— = dj ■ the simple case where dq ’’ ,11 WO

Ill

J = V dl -2\Pdx. (2)
1 111 0) \ 111

vo vo

We now consider the case where the coupling-coefficient // can be taken 
to be so small that the particle will run through the region in phase space 
between the surfaces with constant energy E and E + dE several times 
(a increasing each time by 2tc) before it leaves this region and changes its 
energy. Expressed in another way, we suppose the particle density to be 
equally distributed over the region between and E \ dE, that is ø = 0(./) 

(d<J>\ . .or k- = 0. Substituting

d dj d p d j d d.J d 1 dV d 
dp dpdj ainidd dq dqdd wdqdj

into eq. (1) and introducing the reduced energies ,r = ßE and reduced action 
variables / = ß.I, eq. (1) is transformed into

dø
dt

P2 d 
a m dj

, p2 d2& 
ai2 m dj2

obtained

0 (3)
dø d I
dl ~ 1ldj\

Then integrating (averaging) over a from I) to 2tc using eq. (2), the following 
partial differential equation is

ß>.i

where in the last equation 0 is considered as a function of the reduced 
energy ,r and I instead of / and /. Introducing the reduced lime t = /// we get 

and separating the variables by setting

we obtain
0 (,r, t) =- W (,r) (d ( r)
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1 c/0
0 dr

1

As ø has to approach a stationary function for r -> x , the solution for 0 
must be 0 x e~kT with k positive and real. For P we therefore obtain the 
differential equation

œ , / 1 + , \P \ kP = 0.
dx \ dx /

Because we are primarily interested in the deviation from the Maxwell- 
Boltzmann distribution, we set P (,r) = y (x) e~x, and obtain for y

or
+ (1 - jm)

(4)

(5)

V(q) = C I q" I I C being a constant, 0 < 7 < as for example the square-

./

W’lic'ii 7 = c substituted we get

dz

(6)

is seen that c has to be put equal to= x ”) it

be shown simplest by introducing 
defining ./ when the potential is svm-

and /’co

F \1/w 
c is

For a box-potential (i. e., “;i

- in eq. (6). For these potentials the distribution function y thus obeys the 

differential equation

. dy . , ,
.r , „ t (c -x-) + «7 = 0 with a = ck.dxå dx

1
(D 

dm 111
zi + 2

■’-L

Furthermore, for the special potentials, which can be expressed bv 
(?0

well or the harmonic potential, jea will be proportional to x as a consequence 
of the virial theorem. This can
p = ± [ 2m(E-V) in the expression 
metrical about 7 = 0.

(?)
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Exact solutions of Kramers’ equation

The exact solution of eq. (7) is a confluent hypergeometric series9

?/ = i7*!  (~ ø c -r)
(i a ( - (i + 1) .r2

.X’---------------- 7----------------r----- 7 .

c c (c + 1 ) 2 !
and our result is therefore

0 =^_ bk e kT e r1Fl ( a, c; ,r). 
k

(8)

(9)

’flic, values of k which must be selected in the summation above are deter
mined by the boundary condition: 1Fl (-a, e; ,r:i:) = 0. The physical meaning 
of the condition: 0 = 0 for ,r > ,r*  is that the particle associated with the 
oscillating motion of the molecules considered is simply annihilated, when 
it—during its random motion—reaches the reduced energy ,r*.

fhe eigenvalues a = ck given by the equation 

,/q (-o, c; ,r) = 0

lie very close to the integers 0, 1, 2, 3, . . . for arge values

cause of the factor e~kT in each term of eq. (9), the term corresponding Io 
the smallest eigenvalue u() « 1 will be quite dominating, if only a certain 
lime has (‘lapsed since the system was “started” with some initial distribution, 
and the error made by setting 0 equal to this first term will therefore be 
completely negligible for reasonable values of .r*  (say ,r*  > 5).

The reduced rate constant k0 for the annihilation process—and for the 
(diemica) reaction—is defined by:

dAr 
dr

Å'oA’

where Ar is the total number of particles in the potential well
r'*X*

N = \ 0 (.r, r) <l.v.
• o

It can therefore be calculated from the following expression in which all
terms in the solution for 0 except the first have been neglected.

,r ) d.r

I* 37* a„T
\ b„e c c; ,r) dr
♦ o

Uo
(11)c
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(12)

The integration above is carried out by selling

.r
( 1, c; ,r) P(.r

in the polynomium P by dif-

i/’id, c; .v) ,T

P can be determined to be

x xx

and determining the coefficients u0, cq, . 
fcrentiation

c(c + l).r~34

-0 directly as a function of 
somewhat more approximate,

is possible to evaluate q 
simpler, although

r dP
X1Ildx-

If al this place we substitute the asymptotic formula for j/zj ( 1, c; .r)9, valid 
for x yy 1

........ .■

i d <■; æ) = p

drx 1 \ . . .) I const.

_1) + const.

/’(l)

By means of eq. (12) it
.r*  (method 3), but a 
formula can be found by using

♦ 0

The problem of calculating the rate constant is by eq. (11) reduced to the 
purely mathematical problem of finding the lowest value lor a which satisfies 
(10).

If 1F1 is Taylor-expanded in n0, assuming that n0«l, we obtain the 
following approximate solution of eq. (10) as j/q (0, C +*)  = '

1 /d id (u, c;Jr:i;)\ +:;:( .t* 2
no \ d a la = 0 c c (c +1)2
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(l.V lu .V ’- 1^1(1, c;.r)

= /’ (c) ex>~ x*  c + 0 (hi .v: ).

1
æ

We have therefore obtained the following asymptotic formula

<l3> 

which rapidly converges upon the exact result as the value of .r increases. 
As mentioned in the introduction, this result is precisely what one would 

expect more intuitively, namely 7c cc ,r*  e~x*.
(o (.r::;)

fhe agreement between the 7c-values given by eq. ( 13) and those obtained 
by numerical solution of eq. (10) either by a machine method10, which has 
been done lor c = 1, or by other methods such as method 3, mentioned 
above, is fairly good for the higher values of ,r (see table 1).

The variational method

We now return to the general problem of solving the Kramers equation (3) 
without making assumptions about the form of the potential in which the 
particle moves, First of all we are interested in a method which allows a 
calculation of the smallest value of 7c for which 0 satisfies the boundary 
conditions, because this value is equal to the rate constant 7c. For that purpose 
a variational method is used. The method enables us to determine Å-values 
only a little larger than the exact ones by approximating 0 with a trial 
function.

Jt is immediately observed that equation (4) is of tin*  Sturm-Liouville 
type and that y satisfies the Sturm-Liouville boundary conditions:
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Table 1.
Values lor the rate constant k, in reduced units.

.1* method

V =

Potential

Morse potential
1

/I = 30 , c = —

box-potential

n = 2, c = 1 
harmonic 
potential

-‘•“I 

const, force 
potential

2 1) 0,210 0,271 0,288
2) 0,249 0,348 0,463 0,414
3)
4) 0,329 0,372

5 1) 0,0170 0,0337 0,0566
2) 0,0150 0,0288 0,0471 0,0388
3) 0,0152
I) 0,0274 0,0345

10 1) 1,02- IO"4 1,54-10-4 10,8-10 4 6,21 • IO“4
2) l,54-10-4 4,09-10-4 9,28-10”4
3) 1,53-10-4 9,00-10-4
1) 1,02-10-4 5,86- 10-4

15 1) 1,33-10 6 4,58-10“6 13.3-10“«
2)
3) 1,29-10 6 12,1 • IO“6
4) 4,26-IO“6

20 1) 1,04-10-8 4,12-10-8 13,9- 10-8
2) 1,01 - IO-8 3,92-10-8 12,9-10-8 6,45-10-8
3) 12,9-10-8
1) 3,90-10-8 6,45- IO“8

Method 1) is based oil formula (13).
Method 2) is based on formula (17) using table 2.
Method 3) is based on formula (12).

The confluent hypergeometric series has been evaluated directly by means of a desk 
computer.

Method 4) are calculations on a digital computer.
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The variational principle now guarantees that if instead of the exact solu
tion y- we substitute a “trial 
Â’o comes out

function” V(.r) into this expression, a value

• 0

tx*

• 0

(11)

which is larger than />•„. By varying the parameters in the trial function 
until Â’o attains it minimum value, we can therefore determine an approximate 
value for Å().

If the denominator in eq. (14) is considered as a normalization constant 
for V, this problem can be formulated as the problem of tinding among all 
possible normalized functions for which y(.r*)  I) that function «/ which 
minimizes the integral

° t X*

(i5)
» 0

11 is interesting to note that this integral is formally identical with the “gene
ralized entropy production” discussed previously by one of us11 in connection 
with ordinary diffusion, Therefore the variational principle can be considered 
formally as a case of the theorem of Prigoginc slating that a stationary 
irreversible process is characterized by a minimal production of entropy.

If in eq. (14) we change to the new variable .V = .v/.r:’:, we obtain

♦ o
In tin*  calculations of A’0-values performed in this work we have used the 
trial function: )'(A”) = 1— ?x~x* = 1 since a calculation for the
harmonic potential with the use of a trial function including a parameter £, 
b = 1 -e'’ gave the lowest Åg-valne, when £ was extremely close to the 
value 1. It should be noted that z/ = 1 - corresponds to a ^-function

<// = c~*y  = e~x-e~x*.
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That is, except for a normalization factor il is simply an equilibrium distribu
tion function from which a constant value e~x* has been substracted in order 
to make T7 zero for x = .r*.

When this ^-function is substituted into eq. (16) we obtain
l* 1

2 -............— . (o)
I*
\ Cj**  ( 1 + e2x*  (X- 1)_ 2 (X-1)) (JX

' (x)
♦ 0

From this expression the values for the rale constant k listed in table 1 were 
calculated (Method 2).

Escape of a particle from a Morse potential

In order to obtain a better approximation to the true intramolecular 
potential for a diatomic molecule than the simple potentials discussed above 
and to check the above variational principle, we have investigated the escape 
of a particle from a Morse potential given by

V(r) = /)(1 e“r/(5)2

r is the length of the molecule minus its equilibrium length, and co0 is the 
frequency of oscillations for very small energies, that is, the harmonic 
frequency. Pho magnitude of l/<5 measures the degree of anharmonicity.
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From this expression it follows that

./

and
(!)

which when substituted gives the equation

‘)

.T

1) and obtain

u ( 1 n(l

in terms

for large .v
in which

F (a ) -
and

c

1
2 a

functions, 
a solution

of known 
for which

»)2- u)L’y 0.

yC?*-  1)F^ + f2î‘
1-2,r*

through the points (u, </) = (0,1 ) and 
a trial and error method. This was 
results are listed in table 1.

In order to cheek the validity of 
developed above we have
,/(A') and to (A") for the Morse potential have been 
used for these calculations is:

the variational principle in the form 
calculated the A'o values given by eq. (17), where 

inserted. The expression

I bis differential equation cannot be solved 
but by numerical integration tin' smallest value of k,

(u, y) (1,0) exists, can be found by 
done on a digital computer and tin'

(l2 y

k'(.v-) and (i(.v- ) are listed in table 2.
[/ JT

equal to -2 .i”!
should be compared with that obtained for the harmonic potential:

The expression for A()

X (. X)]^ 2

the limit ,r
1 

and (r asymptotically equal to t) ....

e x* for large x
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Table 2.
Values for the functions F and G

X* F G

5 0,396 0,1157
10 0,280 0,0527
20 0,198 0,0256

Derivation of a diffusion equation in phase space

We have previously7,14 considered the Brownian motion of an oscillator 
coupled to a lattice which serves as a thermostat and shown that q, the 
density in phase space of the system consisting of oscillator plus thermostat, 
satisfies the equation

in which and a>f are the action variable and the frequency of a lattice 
oscillation with wave number /', J and co are the corresponding variables 
for the oscillator. y is a Fourier coefficient of the non-harmonic inter
action energy which will be defined below. In deriving this result it was 
assumed that co is independent of ./ so that the Hamiltonian has the form

// =^?co/'7/ + <7 1 V-
f

We shall now see that precisely the same equation arises when co depends 
on J, except that Vv f has to be defined slightly differently.

For the perturbing potential V we take

V(r) = ^W(r~aJlln
n

where un is the displacement of the n’th particle in the lattice, and W(r —czw) 
is the force exerted on the oscillator by an infinitesimal displacement of the 
n’th particle. This force of course depends on the stretching of the oscillator 
which is given by r. Expressing uH in normal coordinates we obtain

V = J Vfqfeifr
fwith

Vy=2 W (r - anTif {r-a"}.
n
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As an approximation we assume Vf to be independent of r for all values 
of /'.

I’he equation for o given above is derived from the spectrally decomposed 
Lionville equation, using the integration technique developed by Broit 
and Pkigogi.xe12. In order to apply this method the interaction potential V 
must be Pourier expanded on the angle variable a. This can be done quite 
simply in the case of a harmonic oscillator by using

r = i’o sin a 
and x

,,1/r.s!,,«. (2(|)
m = - X

where Jm
I sing

is the Bessel function of zn’lh order.
7/ = one then obtains

m, f ~ Cfroi)

Vm,f~ I f(lf Jm(/ro) •

The squares of the absolute values of these Pourier coefficients are indepen
dent of the index + or - and are the quantities | Vv f |2 used above.

When the oscillator is not harmonic we still have r = r0 (J) 0 (a) for the 
simple potentials we are going to consider. Here (9(a) is a periodic function 
with the property |(9(a) | < 1. W’e now deline the functions Ym as

m = - x
(21)

and replace in the equations above by Vwl(/r0). W hen | Pr y|2 is rede
lined in this way, and it is assumed that co = co(./) is a function of./, equation 
( 1 ) now describes the evolution of o for the system of an an harmonic osc 
in a lattice of harmonic oscillators.

W’e then use that 

and

where J/(A) is the total mass of the lattice.
Also, as is usual in calculations of this sort, we use the Peierls assumption
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2
COy

constant

and the Debye spectrum for the phonons

(I Of 

df C

where c is the velocity of sound in the crystal. Finally we assume that the 
crystal is in equilibrium, i. e., we set

(I)j- rlf   A*  1 *

I nder these assumptions the integration over of is elementary because 
of the ô function, and the sum over v in the equation for o amounts to
evaluating

For the case of a harmonic oscillator an analytical expression for the above 
sum has been found by Schott17, namely

z2 (4 + z2)
8(1- z2)1/2 (22)

and since z = r0o/c is small compared to one, the right hand side is replaced

In general an analytical expression for the sum r2 I 2 (rz) cannot be 
V

found, but we can lind an approximate expression for the sum valid under 
the same conditions as above.

Expanding in powers of z we have
V r2 Y2 ^y v2 Y2 ( ()) + 2 r y> v3 Y„((}) Y' (())
V V V

+ z2 y/[r;(0)2 + y; (0)17 (())]+. • •
V

From the definition of Yv (z) it is immediately seen that 1), (0) = ôv 0 
and therefore the above expansion reduces to

y V2 F2 (vz) = z2JT ”4 Y'v (0)2 + 0 (z3).
V

Using the definition of Yv (z) and Parsevals theorem for the Fourier coef
ficients we have
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and therefore

1

a bbrevialions we have used before, i. e.,as

Â2

,r
we have

M (.r)
dø
d/

where the bar denotes lime average. 
With the same

(23)

(24)

which deviates from the classical Kramers equation in that ./(,r) has been 
replaced by (a constant times) J. Il is easily seen, for instance

by using the virial theorem, that for a harmonic oscillator

a vv
dr) z '

where y is the force constant, so that for this case we obtain lhe same 
result as previously, namely

dø
d/

with

'bo be able to use this formalism on non-harmonie oscillators we must 
first estimate how large an error in lhe rate constant we commit by replacing 
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the right hand side of eq. (22) by -z2. This is necessary because the validity 

of eq. (24) depends on a similar approximation.
Using the complete expression (22) in the master equation eq. (19) we

find 
dø d 1+ sx 
dt dx ]/1 - £ x

where e is the ratio of kT to -me2, m being the mass of the particle and 
c the sound velocity.

Using the variational principle and the same trialfunction as above we 
find that for large values of x 

and since ex*  is smaller than one for all cases of interest this expression 
is permissible. Although the approximation obtained by replacing eq. (22) 

by z2 primarily is good when one only considers the Brownian motion of 

the molecule at low energies it is seen that the ratio between the correct 
rate constant and the approximate rate constant is only a factor 2—3 even 
when ex* ™ 1/2. The temperature dependence of the preexponential factor 
is of course somewhat different in the two expressions, but since this depen
dence is small anyway and not easily accessible experimentally this is of 
minor importance.

We can therefore presumably use eq. (24) derived above for estimating 
the influence of anharmonicities on the rate of escape of a particle from a

idV 
\ dr I

potential minimum. ——
* ... .Id V\2For the box-potential, which is zero for |r| < Z/2, we interprète as 

\2 , 2v
I = 16 E2//2 = E2, where y is the spring constant for the equivalent 

harmonic potential i. e. the harmonic potential for which the stretching 1/2 
corresponds to the potential energy 1).

We then get 

and now tj has the same meaning as above. Using the variational principle 
we get
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Å’o = 2 X - - F - G _ 2

or, in the asymptotic limit ,r*  -> oo

This is precisely the same result as that obtained by Kramers’ theory 
in the limit x*  -> oc , in spite of the fact that lhe equations for 0 are com
pletely different. /d V 2 1

For the potential C |r| we have ryj = where y is again the

spring constant of the equivalent harmonic potential. We therefore have

dø 1

and, using the variational principle, we get

,, 1 * e-ni-G(O] À-Q = 2 r/x----------------------------------
F(x*)-e~ x* G(x*)--x*e~ x" 

or, in the asymptotic limit

This result deviates only by a factor of - from what one obtains from 

the theory of Kramers. We see therefore that for these simple anharmonic 
potentials the theory of Kramers and the more rigorous theory give practically 
the same results for the rate constants in the limit of large activation energy 
in spite of lhe fact that the equations for the density in phase space look quite 
different. This does not necessarily mean, however, that the result also would 
be almost identical for, for instance, the Morse potential, because in this 
case r = r (a, ./) cannot be factorized, and therefore the short-cut used above 
cannot be applied.

Conclusion
The main result of the above calculations is that anharmonicities in the 

intramolecular potential changes the rate of a dissociation reaction by a 
factor which is approximately inversely proportional to the generalized fre
quency of the particle when its energy is equal to the dissociation-energy.
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This only holds true for potentials of the form C | r |w. For the Morse potential, 
for which the frequency goes to zero at the dissociation limit, the increase 
in rate over that for the harmonic potential is only a factor of two.

The result seems to be rather independent of whether one uses the 
theory of Kramers or a more relined theory. In the latter case however, 
owing to mathematical difficulties, only some of the simpler potentials could 
be treated, not the Morse potential.

The fact that the rate is increased when the frequency decreases with 
energy is well known. In the language of quantum mechanics it means 
that the rate is increased when the density of energy levels increases with 
the energy. It is remarkable, however, that the increase in rate obtained in 
this way for the Morse potential is far smaller than one should have expected. 
Rice13, for instance, estimated that the anharmonicity in the Morse potential 
would speed up a dissociation reaction by a factor of twenty over that of a 
harmonic oscillator molecule. The most intuitive reason for this is probably 
to be sought in the fact that for potentials of the form V = C | r |" the anharmo
nicity is operative already at very low energies (r ~ 0) whereas the Morse 
potential is almost harmonic up to fairly high energies.

Although the results obtained here for the Morse potential using the 
Kramers theory conceivably could be changed somewhat by a more rigorous 
theory, we feel that the influence of anharmonicity in weak interaction 
theories has perhaps been somewhat overestimated in the past. Since hard 
core interactions play an important role in gasphase kinetics and no ex
perimental result, to our knowledge, exists for dissociation of molecules 
interacting with phonons, it would be premature to try to compare with 
experiments at this stage.
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Synopsis
The recoil Ga66 ions, produced in (a, n) reactions when a thin copper layer 

is bombarded by a-particles from the cyclotron, are stopped in a pure gas. The 
thermalized ions are collected by means of an electric field, and from measure
ments of the activity distribution on the collector electrode the range distribution 
is obtained. In each gas, H2, D2, He, N2 or A, the mean range is found to be 
nearly proportional to the energy E in the interval 0.6 MeV< E < 1.2 MeV, in 
agreement with a theoretical formula given by Lindhard and Scharff. In this 
energy interval both electronic and nuclear stopping are of importance.

The reliability of the method is discussed. The shape of the range distribu
tion in H2 is compared with the calculated shape to be expected as a result of 
neutron emission from the compound nuclei, and from the half widths in various 
gases estimates of the straggling are obtained.

In a special experiment the range of Ga66 ions in copper is estimated. In 
other measurements the ranges of potassium ions in argon and F18 ions in nitrogen 
are obtained by the collector method. Gallium and potassium ions are found to 
be positive when thermalized, whereas F18 in nitrogen are found to be pre
dominantly negative.
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1. Introduction

The total charge z*  of a heavy ion moving through matter is determined 
by a balance between electron capture and loss processes1’2). A conven

ient, though not accurate, rule of thumb is the Bohr formula

where z is the nuclear charge, v the velocity of the ion, and v0 = 2.2 x IO8 
cm/sec is the orbital velocity of the hydrogen electron. For fast ions like 
fission fragments the mean charge is high at the beginning of the path, but 
low at the end. Accordingly, the energy loss caused by electronic encounters 
decreases along the range, and near the end it becomes smaller than the 
loss caused by nuclear collisions, which increases towards the end. The 
total charge depends on the stopping substance3). The variation of the 
charge with velocity and stopping substance makes range calculations 
rather difficult, and experimental data on range energy relations for heavy 
ions will always be of great value. This may be especially true for particles 
with an initial velocity ~ f°r which electronic and nuclear stopping 
may be of the same order of magnitude.

When a heavy particle is moving either through hydrogen or through 
deuterium, the average total charge corresponding to a given velocity must 
be expected to be the same in both gases and, consequently, the electronic 
stopping is the same4). The nuclear stopping, however, is smaller in D2 
than in H2. Therefore the range of fission fragments is longer in D2 than 
in H25). Since the difference stems from the part of the path where v~v0, 
the relative difference should be greater for particles with an initial velocity 
of the order of v0. Such particles may be obtained by bombarding medium 
heavy elements like copper with a-particles of 20 MeV, which is the energy 
of our cyclotron beam. If a thin copper foil is used as a target, the com
pound nucleus, produced when a copper nucleus is hit, will be expelled 
from the foil and move in the forward direction with the center of mass 
velocity. It was anticipated that the study of the range of such recoil par- 

1*  
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lides in different gases might yield valuable information regarding lhe relative 
importance of the nuclear and electronic stopping.

Experiments of that kind were earlier made by Harvey, Donovan, 
Morton, and Valyocsik6>. These authors measured ranges in various 
gases of recoil ions from the reaction Ra226 (a, 4n) Th226, using 40 MeV 
a-parlicles. They found a slightly smaller range in l)2 than in H2; this is 
opposite to the case of fission fragments, but the recoil Th-ions have veloci
ties much smaller than n0, and such low velocity particles may be assumed 
to behave in a different wav2> 8).

By a method very similar to that of Harvey et al. we measured ranges 
in H2, D2, He, N2, and A of Ga66 ions from the reaction

gCu + *He  ®’Ga*  -^®Ga + Jn, (2)

using a-particles of 10, 13, and 19.6 MeV, corresponding to average ion 
energies of 0.61, 0.79, and 1.19 MeV, respectively, or average ion velocities 
of 1.32, 1.50, and 1.84 x 108 cm/sec, respectively. Also, ranges of potassium 
ions in argon and F18 ions in nitrogen were measured. By another method 
the range of Ga66 ions in copper was estimated.

In the next section, the experimental arrangement will be described, 
and in section 3 lhe reliability of the method is discussed. In section 4, 
the results of the Ga66 measurements in gases are given and discussed, 
section 5 deals with lhe Ga range in copper, and section 6 with lhe ranges 
of K and F18 ions. Finally, in section 7, the widths of the Ga range distribu
tions and the angular distribution will be discussed.

2. Experimental method and apparatus

Formula (1) is not valid for very small velocities, and the charge is not 
zero at the end of the path. It is well known from the standard wav of 
producing, for instance, a ThB deposit, that recoil ions from some a-dis- 
inlegration processes are positively charged when brought to rest in a gas. 
The present method is based on the fact that the Ga66 ions will also be 
positive when stopped, so that they can be collected on a negative electrode.

Since the a-beam from the Copenhagen cyclotron was used for these 
experiments only 1-2 hours per day, the experimental apparatus had to 
be made in a way which would allow the beam to be used for other pur- 
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poses the rest of the time. The recoil chamber was made so that it could 
be placed inside an existing scattering chamber and easily removed again 
after use. Apart from the fact that this arrangement was decisive for some 
of the dimensions, the special construction features implied by it are of 
no interest here, and Fig. 1 only shows the principal features.

The a-beam was stopped down to a diameter of 7 mm by a lead dia
phragm 10 cm from the entrance window of the chamber. The window 
was 10 mm in diameter; it was made of a 1.2 mg/cm2 plastic foil with a 
thin layer of copper on the inside surface, which served as the target. The

Fig. 1. Experimental apparatus.

layer, which was deposited on the plastic by evaporation in vacuo, was 
transparent and in some cases so thin that it was hardly conducting; the 
thickness was estimated from the amount of copper used and the geometry 
of the evaporation chamber. The uncertainty is about a factor of two. In 
the actual range measurements, a layer thickness of 5-10 /zg/cm2 was 
used, but occasionally a somewhat thicker layer served as the target in 
auxiliary experiments.

The chamber itself was a piece of a 6 inch steel tube. Inside it, there 
were placed two 3 mm brass plates, 10 x 19 cm2, supported by Teflon insulators 
(not shown). One plate was held at +V volts, the other at -V volts. In 
some cases, the negative plate was replaced by a semicircular rod, 2 cm 
in diameter; the positive plate was then earthed like the rest of the chamber. 
V was chosen somewhat below breakdown potential, different for different 
gases and pressures. It ranged from 200 to 2000 volts. The ionization cur
rents, of the order of 20-100 /zA, were used by the cyclotron operator to 
maintain the machine at optimum conditions. The a-current itself which 
was not measured, was of the order of 0.05 //A.
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On the inside surfaces of the plates grooves were cut lengthwise and 
crosswise; they were spaced 1 cm and formed a whole quadratic coordinate 
net. Before each experiment the plates were covered with aluminium foils 
3 mg/cm2 thick; the foils were bent round and fastened on the back sides 
by means of adhesive tape. By cautiously sliding a stick along the grooves 
the coordinate lines were transferred to the foils. After each bombardment 
the aluminium foils were cut along the lines, and the activities of the pieces 
were measured.

The chamber was fdled with a pure gas. Before and after the bombard
ment the pressure was measured on a mercury gauge. The connection to 
the manometer was via a stopcock and, to avoid any possible influence of 
mercury vapour, the stopcock was opened only a few seconds and pre
cautions were taken to have the main gas flow always going towards the 
manometer. When He was used, the chamber was connected to a liquid 
air charcoal trap. The other gases were continuously circulated through a 
side tube with hot calcium. This is a well working, standard procedure for 
the purification of A. For H2, 1)2, and N2 special precautions had to be 
taken. When using these gases the temperature of the calcium was kept 
below a certain value (not known on an absolute scale), and before the 
actual experiments the calcium was saturated with the gas at the proper 
pressure and the temperature to be used. Separate purifiers were used for 
each gas.

The radioactivity of the aluminium pieces were measured by a 1 1/2 x 
1 1/2 inch NaJ crystal. Each little piece of aluminium could be put in its 
own small specimen tube and pressed down against the flat bottom by a 
weight. During the counting the specimen tube was kept in a standard 
position right on top of the crystal by means of a holder. Small corrections 
had to be applied because the bottoms of the various specimen tubes were 
slightly different; corrections for decay were also applied. Often several 
aluminium pieces, for instance the 10 pieces from a whole row, were put 
in the same specimen tube. To speed up the counting four counter sets 
were used, each consisting of the crystal, the photomultiplier, the amplifier, 
and a single channel analyzer.

Reaction (2) was chosen, among other reasons, because Ga66 is a con
venient nuclide, its half-life being 9h, which leaves plenty of time for counting; 
its y-spectrum contains rather strong high energy lines, and by simply using 
a bias of 1.7 MeV one can avoid counting almost any other possible acti
vity. Na24 might be produced by high energy neutrons in the aluminium, 
but it was not found in significant amounts.
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The other activities (K42, K43, and F18) were measured with a properly 
chosen single-channel window, selecting a suitable y-line. For the adjust
ment standard sources of Co60 (1.17 and 1.33 MeV), Cs137 (0.66 MeV), and 
Na22 (0.51 MeV) were used.

3. Discussion of the method

One might consider the following questions :
1. Will the Ga66 ions remain positive when stopped down to thermal 

velocities? Or will some be positive, some negative, and some neutral? 
Or will a particular ion have a fluctuating charge? It is clear that the collec
tion along the electric field lines can only be good when the ions, after 
being thermalized, remain positive (or negative). If the ions are sometimes 
neutral, they will diffuse around, and the distribution will be smeared out.

2. If the ions are positive, will there still be some diffusion?
3. If the collection works well, what is the influence of the inhomogeneity 

of the field?
4. Will the ions, when collected on the aluminum foil, stick to the spot, 

or is it possible that they may again be liberated as neutral atoms?
The a-particles produce of the order of 1015 ion pairs per sec. If the 

electrons attach themselves to some impurity molecules to form negative 
molecular ions, some risk exists that they may collide with Ga66 ions and 
neutralize them. One reason for using very pure gases is to avoid attach
ment and to secure a fast removal of the negative ions. Other reasons are 
that, in pure gases, it is reasonable to expect7) that clustering does not 
occur, that charge exchange reactions between thermal Ga66 ions and mole
cules can be neglected, and that the positive ion collection time is only a 
fraction of a milli-second, so that diffusion will be completely unimportant. 
Furthermore, an important reason is that possibly the fast Ga66 ions may 
have a mean charge and a mean range depending somewhat on even rather 
small impurity admixtures.

It was found that more than 90 per cent of the Ga66 activity was col
lected on the negative plate when the voltage was sufficiently high. Less 
than 5 per cent was found on the positive plate and less than 5 per cent on 
the walls of the chamber. As shown in Figs. 2 and 3, the activity on the 
negative plate was distributed in a rather broad peak, but this was to be 
expected, because the neutrons emitted from the compound Ga67 nuclei 
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will give the Ga66 nuclei recoil momenta varying in direction and magnitude. 
In fact, calculations which will be more closely discussed below, indicate 
that the width caused by neutron recoil is comparable to the experimental 
width found in the light gases. Experience thus seems to show that the 
method works for Ga66.

In Eig. 2 are plotted the Ga66 activities of the aluminium pieces against

Fig. 2. Distribution of Ga66 activity along the negative collector plate for two thicknesses of 
the Cu layer and with the chamber filled with H2 to a pressure of 80 mm Hg (23° C).

their positions along the collector plate. The ten pieces from each row are 
added. The abscissae are the distance from the window as measured in 
the beam direction. Since some particles diverge they will actually have 
travelled longer. The mean value as determined from the curve therefore 
is the mean of the projection of the ranges, and not the mean of the ranges 
themselves. The difference will be only a few per cent and can be neglected 
(cf. section 7). It may be emphasized that we are here talking about a 
purely geometrical effect, neglecting the influence of scattering in the gas. 
The latter phenomenon implies that the total path length, especially in the 
heavier gases, will be longer than the range, and this difference may be of 
much larger magnitude.

Eig. 2 gives further evidence for the reliability of the method. It should be
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expected that curve B obtained with the thicker target would follow the 
thin target curve A on the right side, because the thick target may be con
sidered to be made up of a slack of thin targets, but, on the left side, B 
would be displaced against smaller range values, in qualitative agreement 
with the figure. Since the mean range in copper is about 270 /zg/cm2 (see 

section 5), the displacement should be about
30-10

270
x 8 ~ 0.6 cm, 8 being

Fig. 3. Distribution of Ga88 activity along the negative collector plate when using a thin Cu 
layer (5-10 /zg/cm2) and He as stopping gas.

the mean range as obtained from curve A. The displacement is slightly 
larger, ~ 1 cm, but since neither the thickness nor the range in copper is 
accurately known, the quantitative agreement is not too bad. It is also 
inferred that, when a target thickness not exceeding 10 /zg/cm2 is used, the 
target contributes only little to the width of the distribution.

Fig. 3 shows the result of two measurements in He. Two different copper 
layers of about equal thickness (~ 10 /zg/cm2) and two He-pressures were 
used. Within a few millimeters the two sets of points show the same dis
tribution. Here it might have been more convincing if the difference between 
the two pressures had been greater. However, in each experiment the pres
sure was purposely chosen in such a way that the peak fell not loo far from 
the middle of the chamber where the electric field has no component in the 
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a-beam direction. Towards the end of the plates the field inhomogeneity 
will distort the results, and the lower parts of the curves — in Fig. 3 to the 
left of ~ 4 cm and to the right of ~ 16 cm — do not reflect accurately the 
actual range distributions.

The distribution curves were the same whether obtained with the col
lector plate or with the semi-circular rod. All evidence thus indicates that 
the longitudinal distributions may be regarded with some confidence.

On the contrary, lateral distributions measured by means of the activity 
on the plate are of no value. Even though the positive ions are rather quickly 
removed, the large number of them will create a space charge which will 
distort the electric field in a way as sketched in Fig. 4a. In Fig. 4b the 
black points and the full drawn curve show the activity of the 10 aluminium 
pieces in the row corresponding to the mean range. The appearance of the 
curve may be understood by help of Fig. 4 a. One consequence of the 
field distortion is the large broadening of the curve, demonstrated by com
parison with the dotted curve and the white points which were obtained in 
the following way: 20 mm behind the window a circular lead disk, 10 mm 
in diameter, was placed ; it stopped the beam as well as the recoil ions moving 
nearly forward. The dolled curve gives the activity distribution along the 
same row of aluminium pieces as before, but now there is no positive space 
charge. For the latter curve the central dip is due to the missing recoil ions 
in the forward directions, and the shape of the curve agrees with rough 
calculations. For the former curve the central dip is, al least mainly, a 
consequence of the field distortion.

The field distortion by space charge will have no influence on the longi
tudinal distribution. However, in order to measure the latter correctly, some 
knowledge of the lateral spread is necessary, because it has to be avoided 
that the recoil ions strike the plates before being thermalized in the gas. 
The dotted curve in Fig. 4b gives some information on the lateral spread 
and indicates the fulfilment of this requirement. Further indication was 
obtained in experiments where the plates were removed and the end flange 
of the chamber was covered with two aluminium foils. During bombard
ment the chamber was evacuated. Afterwards the foils were cut into circular 
rings by means of especially prepared punches, and the activities of the rings 
were measured. Fig. 5 shows the (la66 activity on the catcher foil. The under
lying foil was inactive (only y-energies >1.7 MeV were measured) with the 
exception of the innermost circle which was hit by the a-beam. For this 
circle the two foils were about equally active, but since it may not be justified
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Fig. 4. a) Distortion of the electric field due to positive space charge (shaded area in the figure). 
Cross section perpendicular to the beam direction. Qualitative sketch. - b) Distribution of Ga66 
activity across the negative plate. Full drawn curve under normal conditions, dotted curve 

when the beam and the recoil ions at small angles are stopped.

to use the difference between the activities of the two circles as a measure 
of the Ga66 nuclei from the copper layer*,  the latter could not be deter
mined for the innermost circle.

In Fig. 5 curve b gives a reasonably good lit to the experimental points. 
The integral curve e shows the percentage of the total number of particles 
within a cone of half angle 0 equal to the abscissa. Il may be seen that 
85% of the recoils emerge from the target foil with 6 < 12°, and if the angular 
distribution were not changed by the stopping gas the full length of the 
chamber could be used without fear of distortion due to particles being 
lost by striking the plates. In all actual range measurements only the tail 
of the distribution curves were allowed to exceed a distance of some 13— 
14 cm from (he foil. In argon, where the scattering is largest, the mean range 
was kept below 9 cm, and it is believed that a negligibly small amount of 
recoils was lost.

* Some of the active nuclei produced in the first foil will be thrown into the next foil, 
which, in the absence of Ga66 from the copper target, would have the higher activity.
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Attempts were made to measure the angular distribution with gas in 
the chamber. An aluminium covered plate was placed perpendicular to the 
beam at a distance from the target foil corresponding to the mean range, 
and again the activity of 6 mm wide rings was measured. Curves obtained 
with and without H2 were almost identical and in fairly good agreement 
with the distribution to be expected according to Fig. 5. In A the distribu-

Fig. 5. Radial distribution of Ga66 activity on the end flange of the evacuated recoil chamber. 
The Ga66 was produced by bombarding Cu with 19.6 MeV a-particles. The abscissa is the radial 
distance from center. A scale showing the projection angle 6 of the ions is also given. The points 
show the activity in relative units on circular rings, each 6 mm wide, a, b, and c, are calculated 
curves to be discussed in section 7, p. 26. They show the I(0)d9 distribution. Corresponding 

to b, curve d shows the I(6)du) distribution, and curve e the integral \° I(6)d0.

lion was much broader; the measurements were not completely reproduc
ible, perhaps because, since the actual collector plates were removed, no 
sufficiently good electric field was applied, and hence some Ga66 atoms 
stopped in the gas may have reached the end plate by diffusion. However, 
the measurements showed that less than 4°/o of the activity on the catcher 
foil was found at radii larger than 45 mm.

Before leaving the discussion of the method of collecting the recoil ions 
it may be mentioned that reproducible results were obtained only when the 
aluminium foils were handled with utmost care. By experiment it was found 
that 40—80% of the activity could be removed from the foil 1) by dipping 
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it in water or ethyl alcohol, 2) by rubbing it with a wet cloth or 3) by pressing 
a thumb against it. 20—40% was removed 1) by rubbing lightly with a 
clean, dry cotton wool cloth or 2) by touching gently with a clean, dry 
linger. Here is another reason for using a pure and dry gas. There may also 
be some reason for using as collector foil the aluminium which is chemi
cally related to gallium.

4. Range of Ga66 ions in gases

Longitudinal distributions of Ga66 activity obtained in H2, D2, He, and 
A are shown in Fig. 6.

The difference in ranges in H2 and D2 demonstrates at once the im
portance of nuclear stopping, as discussed in the introduction. It also tells 
something about the electronic stopping.

For the velocity loss per cm due to nuclear encounters Bohr has given 
the formula (ref. 2, (5.1.2.)) 

with

|/_2/3 , _2/3
I _l“~2

m1 m 2 v3 v

/t (nil + m2) 

nil + n^2

(3)

where N is the number of atoms per cm3, in± and are the mass and 
nuclear charge numbers of the ion, m2 and z2 the corresponding values for 
the stopping substance, v is the ion velocity, and ft and e are the mass and 
charge of the electron. In a way described earlier (ref. 4, p. 31) the range 
energy relations in H2 and D2 may be calculated, assuming no electronic 
stopping. For Ga66 ions of velocity 1.84 x 108 cm/sec the range in I)2 would 
be 1.38 times the range in H2. The experimental ratio is 1.17, thus indi
cating the importance of both electronic and nuclear stopping.

According to formula (3), the nuclear stopping power per cm will be 
about the same in D2 and in He. The longer range in He shows again that 
the electronic stopping in D2 is not negligibly small compared to the nuclear 
stopping. It shows furthermore that the electronic stopping is smaller in 
He than in 1)2. In this connection it is interesting to remember that the total 
charge of fast fission fragments is smaller in He than in H2 (or D2)3). How-
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ever, from the present measurements no conclusion regarding the ion charge 
in D2 and in He can be drawn, because the range may be longer in He 
than in D2 even if the charge values are equal. In fact, the ratio RHe/RD = 
1.22 between the ranges in He and in I)2 is closely the same as the ratio

Fig. 6. Range distributions in H2, D2, He, and A of Ga66 ions produced by bombarding Cu 
with 19.6 MeV a-particles. The abscissa is the range in cm at 760 mm Hg and 23° C. - In the 
measurements the gas pressure was 71, 79, 104, and 17.3 mm Hg of H2, D2, He, and A, respec

tively.

5 MeV a-particles. This agreement between the figures is accidental; actually, 
the ratio between the electronic stopping powers for these slow ions may 
be expected to be higher Ilian 1.2, but the ratio between the nuclear stop
ping powers in He and I)2 is about 1, and the range ratio depends on both.

For the heavier gases nitrogen and argon the experiments give RN/RA = 
1.02, and one has for 5 MeV a-particles /("T" j = 0-98. This agree- 

ment may be understood in a somewhat similar way as for 1)2—He.
When comparing the light and heavy gases one does not lind such 

agreement between ratios of ion ranges and a-ranges. The experimental 
value for the ratio between the ranges in A and in He is RA/RHe = 0-135,
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whereas the ratio between the stopping powers for 

slower particles it

5 MeV a-particles is

may even be larger.and for

Fig. 7. Range in jtiglcm2 of Ga66 ions in gases. Note the different ordinate scales for H2 and 
for the other gases. The ions are produced in the reaction Cu63 (a, n) Ga86 and the abscissa 
is the a-energy. A scale showing the mean ion energy is also given. On the top of the figure 
scales are given for the average ion velocity in units of 108 cm/sec and in units of v0, the orbital 

velocity of the hydrogen electron.
The curves are straight lines through origo.

This again illustrates the influence of nuclear stopping which for the Ga 
ions, according to formula (3), is many times larger in A than in He.

Table 1 and Fig. 7 summarize the results obtained for various a-energies. 
A range correction of 2% for finite target thickness has been applied. To 
a rather good approximation the range in each gas is found to be proportional 
to the energy. The proportionality constants are given in Table 2.
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Table 1. Range in gases of recoil Ga66 ions, given in mm (760 mm Hg, 
23°C) and in //g/cm2.

a-energy
mean ion energy 
mean ion velocity

19.6 MeV
1.19 MeV

1.84 x 108 cm/sec

13.0
0.79

1.50 x 106

MeV
MeV 
cm/sec

10.0
0.61

1.31 x108

MeV
MeV 
cm/sec

mm //g,' mm
/'g/ mm

1. 2.. av. cm2 1. 2. av. cm2 1. 2. av. cm2

h2 8.8 9.0 8.9 73 5.9 5.7 5.8 47.6 4.55 4.62 4.58 37.6
1)2 10.3 10.4 10.4 170 6.5 6.7 6.6 109 4.95 5.15 5.05 83
He 12.6 12.5 12.6 207 7.3 7.8 7.5 124 5.8 6.0 5.9 97
n2 1.76 1.69 1.73 199 1.10 127 0.91 105
A 1.69 1.71 1.70 280 1.16 191 0.95* 156*

* a-energy 11.0 MeV.

Proportionality means,
/i/E\ of thesum, - +dx /e \ dx !v

stant in the energy range
also given in Table 2.

that the total stopping power dE 
dx ’

equal to the

electronic and nuclear stopping powers, is con-

considered Values for dE ., in various gases are 
dx

If the electronic stopping is neglected one should, for velocities p«p0 
just expect proportionality between range and energy (cf. formula (5.4.2) in 
ref. 2), while for n~ao one should expect a somewhat stronger energy 
variation (ref. 2, formula (5.3.2)). The present experiments show that both 
electronic and nuclear stopping play important roles, and none of them 
can be neglected. Now, for increasing velocities, the nuclear stopping de
creases, but the electronic stopping increases and, in fact, it so happens 
that these two effects balance each other in such a way that, for a consider
able interval of velocities, not only for n«/;0, the range is closely pro
portional to the energy. This is discussed by Lindhard and Scharff8) who 
give the formula 

(4)

where the units used for the range, the energy, and the masses are //g/cm2, 
MeV, and mass units, respectively, and where theoretically à = 600.

It is borne out by the experiments that the formula gives a rather good 
approximation for Ga ions even for velocities comparable to vQ. Intro-
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* for energy 0.67 MeV.

Table 2. R/E, range in fig/cm2 divided by energy in MeV, and stopping 
dE

power in keV per /ig/cm2 for Ga66 ions in gases.

RE
for Ga66 ion energies

RjE
Weighted

mean

dE
dx

1.19 MeV 0.79 MeV 0.61 MeV

H2....................................... 61.3 60.3 61.6 61.1 16.4
D,....................................... 143 138 136 139 7.2
He........................................ 174 157 159 163 6.1
N,....................................... 167 161 172 167 6.0
A......................................... 236 242 233* 237 4.2

ducing the experimental range valnes into the formula we tind for k the 
values given in Table 3. It may be seen that the fit is very good for H2 and 
for N2. In D2 the experimental values vary monotonically with velocity, 
which would indicate that the relative range difference between H2 and 1)2 
decreases with decreasing velocity; however, the variations are hardly out
side the experimental uncertainty. The rather large Â’-values in He show 
that, here, the electronic stopping plays a comparatively minor role than 
in the other gases. The small Å’-values in A reflect the influence of scattering 
in the stopping gas; actually, in (4) R' stands for the average total path 
length, and the average (projected) range should be expected to be smaller 

than the former by a factor8! ----------- - = 0.83, thus leading to a k value of
14^3 7771

500, in close agreement with the experiments.

Table 3. Experimental value of the constant k in formula (4).

Ga66 ion velocity 
in units of 108 cm/sec

1.84 1.50 1.-38 1.31

Ho.................................................................. 580 570 580
D„.................................................................. 660 640 620
He . . 750 680 690
N2 . 590 560 600
A . . 510 520 550
Cu . 340

Mat.Fys.Medd. Dan.Vid.Selsk. 33, no. 8. 2
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5. Range of Ga66 ions in copper

A copper foil of thickness about 1.5 mg/cm2 was bombarded with a- 
particles. A thin gold foil, thick enough to stop the recoiling Ga66 ions, was 
placed close behind it. If / is the thickness of the copper foil, <q its Ga66 
activity, and a2 the Ga66 activity of the gold foil, the quantity

<71 + (72

may be taken as a measure of the mean range of Ga ions in copper.
Results of such measurements are shown in Fig. 9. It may be seen that 

the values for R are roughly proportional to the energy, and that they are 
not much different from the range in argon. If the R-values are multiplied 

n?2
nil

2°/o, the same in A and in Cu.
In Table 3 a k-value is given. Assuming the range to be smaller than the 

1 3path length bv the factor------------the //-value to be expected would
14--3 7771

be ~450. However, when m2 is about as large as 7/q just as for copper, the 
scattering gives rise to a very large smearing-out effect. Furthermore, the 

<72 ...activité ratio ------may depend on the collector foil, which in our case(71 + (7 2
was gold, i. e. a substance with a rather high m2 (back scattering).

to give the total path lengths, the latter are found to be, within

6. Ranges of other recoil ions

In our measurements of the Ga66 activity we usually counted y-rays with 
energies higher than 1.55 MeV. Using argon as a stopping gas it was found, 
however, that the range distribution had a foot on the right side. This may 
be seen in Fig. 6; it has only a negligible influence on the important part of 
the distribution curve. Il is caused by a K42 activity, half life 12h, produced 
in the gas by the reaction A40(a, np) K42. K42 has a rather strong y-line at 
1.51 MeV. Ry counting, after the actual Ga66 measurements, y-rays in the 
energy interval 1.45—1.60 MeV, it was found possible to obtain the K42 
activity distribution as well as a corrected Ga66 distribution. From the cor
rected K42 distribution the range of K42 in A was obtained.
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By the reaction A40(a,jb)K43 also K43 is produced. This nuclide has a 
half-life of 22h; it has a strong y-line at 0.615 MeV, which could he measured 
several days after bombardment.

In later measurements of the Ga66 range in A the counting limit was 
raised to 1.7 MeV and thus the Ga66 activity distribution was not disturbed

Fig. 8. Activity of K42 (curve a) and K4S (curves b and c) per cm of collector plate. The 
abscissae are the distances from the entrance window. The potassium is produced in the argon 
gas by (a, p) and (a, np) reactions. Curve a and b refer to the same argon pressure (17.3 mm

Hg), curve c to a higher pressure (24.4 mm Hg).

by the K activity. The K43 distribution could still be obtained as a bi-product.
Fig. 8 shows some examples of distribution curves. Since the A-target 

is thick, the curves are of the integral type. If the range distribution were a 
sharp peak, the integral curve would reach half maximum height for an 
abscissa equal to the (mean) range Rwl. Assuming a Gaussian distribution 
with full width at half maximum height equal to Rm:i:, one finds that the 
ordinate for Rwl is not 0.5, but only 0.45 times the maximum height.

Clearly the determination of the mean range is less precise than for the

This is a rough estimate; actually, the width may be larger (cf. section 7). 
2*



20 Nr. 8

(la ions, and the information about the width of the distribution is poor 
Also, the field inhomogeneity near the end of the plates may be more serious; 
in fact, the plateau must be reached before 15—16 cm, or the result will 
only be a lower limit for the mean range. For this reason the K42 and K43 
ranges were measured in special experiments, in which no Cu-layer was

used and the pressure was high enough to make the chamber length con
siderably larger than the ion range (see Fig. 8 c).

Similar experiments with no Cu-layer and with N2 in the chamber 
yielded a value for the range of F18 ions in N2. The 511 keV line was used; 
the half-life of 112™ was observed. Some shorter living activity produced 
in the plastic foil was allowed to die away, and only measurements made 
more than 3 hours after the bombardment were used.

The K ions in A were found to go predominantly to the negative plate, 
the positive plate having only about lO°/o of the activity. Both plates gave 
the same distribution.

The F18 ions in N2 were found to behave in a different way, about 2/3 
going to the positive plate and only 1/3 to the negative plate. The distribution 
on the positive plate was similar to the curve shown in Fig. 8 c. The dis
tribution on the negative plate was probably identical, but it was measured 
on two other counters, and due to an accidental failure of the power supply, 
it was less reliable.

The different behaviour of the ions may give a hint concerning a possible 
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influence of the chemical nature of the ions on the ionic charge of thermal 
ions.

The values obtained for the ranges of K ions in A and F18 ions in N2 
are summarized in Table 4. The values printed in italics were determined in 
particularly designed experiments and they are considered to be the most 
reliable.

Table 4. Ranges in mm (760 mm Hg, 23°C).

a-energy in MeV 19.6 13.0 11.0

K42 ions in A............................................ 2.2 2.38 1
K43 ions in A............................................ 2.2 2.34 1.4 1.1
F18 ions in N2............................................ 4.09

In Table 5 the ranges in /zg/cm2 and the k values to be inserted in (4) 
to fit the data are given. Here again zn2~zz?1, and if it were justified to use 
formula (4), one should expect £~450. The small value of k for F18 ions 
in N2 shows the non-validity of (4) for these rather fast ions (p~3.5 p0). 
The nuclear stopping power computed from (3) would lead to a range more 
than 100 times larger than the experimental value, and it is thus found that 
for these ions the nuclear stopping is vanishingly small compared to the 
electronic stopping.

It may be noted that for K43 ions the range is found to be nearly pro
portional to the energy, and that for equal energy the K ions and the Ga 
ions have about the same range (see Fig. 9). The latter is contradictory to 
formula (4), as is also seen from the low Å'-values. In view of the close 
quantitative agreement between the formula and our Ga range values in 
gases, it seems strange that the formula should be in error by almost a factor

Table 5.

Velocity*
cm/sec x 108

Energy
MeV

Range
/zg/cm2

k

K42 in A...................................................... 2.79 1.70 400 280
K43 in A...................................................... 2.79 1.74 390 270
K43 in A...................................................... 2.28 1.16 240 250
K43 in A...................................................... 2.10 0.99 200 230
F18 in N2.................................................... 6.47 3.90 480 110

* Actually, the velocity of the compound nucleus which is assumed equal to the mean ion 
velocity.
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of two for K ions which have velocities only slightly greater than the Ga 
ions. Neither can we imagine the experimental ranges to be so much wrong. 
A possible explanation for the discrepancy might be the following.

There is reason to believe that the Ga66 ions are produced in com
pound nuclear reactions and that the measured mean range corresponds 
to an ion velocity ecpial to the velocity of the compound nucleus (cf. next 
section). We have assumed that also the A40(a,p)K43 reaction takes place 
via a compound nucleus, but if direct interaction processes are of impor
tance, the residual nuclei may acquire smaller mean velocities, since the 
protons may be emitted predominantly in the forward direction.

This explanation does not seem too plausible. We should like to point 
out that the cases of disagreement are those in which m1~m2 (Ga ions in 
Cu, K ions in A).

7. Discussion of range distributions and angular distributions 
of Ga66 ions

Remarks on straggling and nuclear temperature

As already mentioned, the spread in the range values is caused by 
1) neutron emission from the compound Ga6' nuclei giving rise to a rather 
large energy spread of the ions, 2) straggling in the gas, 3) target thickness, 
4) breadth of aluminium pieces, and 5) diffusion of the thermalized ions.

The contributions from the three last sources are small and will not 
be further discussed.

According to theory, the straggling increases with increasing mass num
ber of the stopping gas, no matter whether the stopping is due predominantly 
to nuclear or to electronic collisions. This is also borne out by the experi
ments, as may be seen from Fig. 10.

Lindhard and Scharff give the formula

o’2 2 nu ni-2
R'2 3 (mi + m2)2

where cr is the standard deviation in range to be expected if the stopping 
were due entirely to nuclear collisions, and R' is the average path length. 
The values A for the full width at half maximum height in per cent of the 
mean range, as obtained from this formula and by putting the average 

1 m2
3 mi

path length equal to times the mean range are given in Table 0.
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The experimentally found total half widths B are also given and furthermore 
the values C = \/B2—A2. The relative uncertainty in the B-values may be 
estimated to about 4%. Then the uncertainties in the C-values are the figures 
given in the table.

If A were the correct scattering half-widths, C would be the partial half
widths resulting from other sources, i. e., essentially from neutron emission. 
Then, since the energy distribution resulting from this process does not

Fig. 10. Range distributions of Ga66 ions in gases. Ordinate: relative number of particles per 
unit interval of range. Abscissa: range in units of the mean range Ro. The Ga66 ions were pro
duced by 19.6 MeV a-particles on Cu. Experimental points are given for H2, D2, He, N2, and A. 

Curves are only drawn for H2, He, and A.

depend on the gas, and since in each gas the range is proportional to the 
energy, the relative half widths C should be the same in all gases (not 
necessarily for all a-energies, see later). This is true within the experimental 
error for the light gases H2, 1)2, and He, whereas for N2 the C-values come 
out too small, and for argon the experimental half widths are smaller than 
the A-values. This is not surprising; it merely shows once more that the 
electronic stopping cannot be neglected, and since the electronic collisions 
contribute less to the straggling than do the nuclear encounters, the real 
relative scattering half widths are smaller than the A-values.

For hydrogen the straggling is small compared to the range spread 
caused by neutron emission. As a first approximation, we may neglect the 
former and consider the value BH as a measure for the latter. For the other 
gases the values I) = y B2-B2H will then represent the scattering half widths, 
the approximation being best for the heavy gases.
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Table 6. Full width at half maximum height of range distribution in per 
cent of the mean range.

B are experimental values. For the meaning af A, C, and D, see text.

Ea = 19.6 MeV Ea = 13 MeV Ea = 10 MeV

A B C D B C D B C I)
H2 23 68 64 ± 3 (0) 67 63 ± 3 (0) 63 59 ±3 (0)
d2 32 72 65 ± 3 (24) 72 65 ± 3 (26) 70 63 ± 3 (32)
He 45 81 68 ±3 45 ±8 84 59 ±4 32 ±12 76 62 ±4 44 ±8
n2 78 85 (33) 51 ±7 89 (43) 58 ±6 88 (41) 62 ±6
A 112 106 81 ±6 104 79 ± 6 104 83 ±5

We may ask what should be the shape of the range spectrum if it is
determined entirely by neutron emission? We shall make the two simplifying 
assumptions, (I) that the neutrons are emitted isotropically in the C.M. 
system and, (II) that the relative number of neutrons per unit interval of 
energy is given by

where Cx is a constant and T, the nuclear temperature of the residual Ga66 
nucleus, is also a constant 9> 10> n>.

Introducing the momentum P = j/2ME, where M is the neutron mass,
gives

dn 3 ——= C2P3c 2MT,dP 2

where C2 is
dP

i a new constant. In this formula, — mav also stand for the 
dn

number of recoil ions per unit interval of momentum. Denoting by Q the 
projection of P on the beam direction (see Fig. 11), the distribution in Q
is given by

dn dP • ~
dQdQ = \\tnP2dPrli<l,,lr'IQ - rf0Wr<fr- 

d d d

where q is 
for a fixed

the azimuthal angle. From Fig. 11 we get P2 = Q2 + r2, hence 
Q: rdr = PdP, thus

dn _ C2 = 00 
dQ 2 JP = Q

p2
P2 e~2MT ({P.
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Let Qo denote the momentum in the laboratory system, due to center 
of mass motion. The projection of the lab. momentum is Q + Qo. Intro
ducing the assumption, which is justified from the previous results, that, 
(III), the projection R of the range*,  is given by

* Since the projection angle 6 is only small, it is not of much importance whether we talk 
about the range itself or its projection.

where C3 is a constant,

dn 
dR =

Fig. 12 shows curves corresponding to T = 1 MeV and T = 2 MeV, 
respectively. The experimental points show a thin target distribution in H2; 
the arrows on the points on the left side of the peak indicate corrections

for the finite target thickness. As may be seen, the points are not inconsistent 
with a nuclear temperature between 1 and 2 MeV. In this region of the 
periodic system, and using a-particles of about 20 MeV, a nuclear temper
ature of about 1.2 MeV may be expected9) 10) 11). Taking into consideration 
other contributions to the width (straggling in the target foil, finite breadth 
of collector foils) it is not surprising that the experimental points seem to 
indicate a somewhat higher temperature.

The calculated curves show a strong asymmetry. Of course, many effects 
will tend to remove this, but it is actually found that the experimental curves 
are also asymmetric, being steeper al the left than at the right side. Il may 
be noted, however, that the points on the calculated curves in half maximum 
height lie closely symmetrical. The experimental value of Ro was determined 
not from the position of the maximum activity, but as the mean of the two 

« = û3(() + ()0y,
findsone

P*
(6)

dn 
dQ
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abscissae corresponding to half maximum intensity. Ro thus determined is 
actually the range of Ga66 nuclei corresponding to the emission of neutrons 
with zero momentum in the forward direction, i. e. the range of Ga66 nuclei 
with a velocity equal to that of the compound nuclei. Thus, no correction 
should be applied for the difference between some of the ranges and their 
projections.

From Table 6 it may be seen that the width of the range distribution is

Fig. 12. Calculated curves showing the range distributions corresponding to temperatures of 
the Ga66 nucleus of 1 and 2 MeV, respectively. The points are an experimental distribution 
obtained in H2 using a-particles with 19.6 MeV. Abscissa: range in units of Ro, the latter being 
the range corresponding to emission of a neutron with zero velocity component in the forward 

direction. Ordinate: relative number of particles per unit interval of range.

almost independent of the a-energy. This indicates that the nuclear temper
ature decreases with decreasing a-energy, a result which is in conformity 
with earlier observations10’ 11).

On the same assumptions (I) and (II), the angular distribution of the 
Ga66 ions is given by

= C sinO cos tA x2e~x* dx (7)
.U

where Xj^ and where 0 is a constant.

In Fig. 5 (p. 12) curves a, b, and c correspond to T = 1.6, 1.8, and 2.0
MeV, respectively, and the experimental points agree fairly well. However, 
the compound scattering in the target foil may be responsible for a very 
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considerable part of the angular width. Due to the circular geometry con
tributions from a-beam divergence (< ± O.°5) and finite target diameter are 
small.

These experiments were carried out at the Institute for Theoretical 
Physics, University of Copenhagen. It is a great pleasure to express our 
heartiest and most deepfelt gratitude to the Director of the Institute, Pro
fessor Niels Bonn. For valuable discussions our thanks are due the late 
Dr. M. Scharff. We thank Mr. A. Hedegaard for preparing the target 
layers, Mr. Ph. Dam for operating the cyclotron, Mr. Fl. Dall and Mr. Clive 
Larsen for help in the counting and the numerical calculations, and Mr. 
H. Christensen for manifold and valuable help.
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Synopsis
A new formulation of the dynamical laws for a system of elementary particles 

is proposed. In addition to simple assumptions of a kinematical nature, the for
mulation rests on the principle that a classical field and classical sources which, 
according to the classical theory, describe the same physical situation, also do 
so when the classical system is coupled to a quantum field. For the simple example 
of the Hurst-Thirring field, it is shown that this principle may be formulated in 
finite mathematical terms and may serve as a substitute for the formal field equation 
of the renormalization theory. To the third order in the coupling constant—and 
presumably to all orders—the perturbation expansion gives the same result as 
the usual theory.

No infinities or similar mathematical ambiguities appear in the theory.

Printed in Denmark 
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1. Introduction

The study of the fundamental assumptions of the relativistic quantum 
field theory has to a large extent been concerned with axioms of a 

general nature, such as f. inst. the axiom of microscopic causality, the asymp
totic condition, and the requirement of unitarity. Basic assumptions of this 
type, valid in general, could be referred to as kinematical assumptions. It 
is well known how to express the kinematical assumptions either directly 
in terms of the field operators or in terms of various mathematical quantities 
closely connected with the field operators. In particular certain distributions, 
such as the r-functions and the r-functions, have been studied. In terms 
of such distributions, one may express the kinematical assumptions in 
closed formla,lb,2,3a,3b)

Various suggestions for the incorporation into such formulations of the 
dynamical laws valid for a specific system of interacting elementary particles 
have been discussed. Thus Lehmann, Symanzik and Zimmermann1^ have 
pointed out that the forces between elementary particles may be characterized 
by means of boundary conditions superimposed on the system of equations 
for the r-functions*.  Recently, NiSHUiMA3b) and Muraskin and Nishijima4) 
have proposed to use a postulated dispersion relation in terms of which 
the boundary conditions may be formulated in a simple manner. It might 
be true that the forces between elementary particles most conveniently are 
expressed in terms of boundary conditions imposed on equations of a purely 
kinematical character. Still, we hardly know the best way of characterizing 
the forces. It might therefore be of interest to investigate also formulations 
in which the basic assumptions are directly concerned with the dynamical 
properties of the system, and in which boundary conditions are used to 
exclude solutions of irregular behaviour only. So far, no direct formulation 
of the dynamical laws, such as, for example, an explicit construction in 
terms of the field operator of the source term in the field equation, could 
be given. More indirect approaches might therefore be acceptable.

* See also ref. 9.
1*
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The formulation investigated in the present work does not utilize field 
equations but is based, instead, on an assumption which concerns the be
haviour of the quantum system when in interaction with a classical system 
of the same type as the quantum system. The assumption has a direct 
physical interpretation for the case of quantum electrodynamics. Consider 
the situation in which photons and electrons interact with an external elec
tromagnetic system. The physical slate of the classical electromagnetic 
system may be described in terms of a classical distribution of current and 
charge In this case, the interaction between the quantum system and
the classical system enters into the theory by addition of the classical source 
;/z(.r) to the operator source of the photon field. However, this is not the 
only possibility. According to the classical theory, we might also describe 
the physical situation of the classical electromagnetic system by the electro
magnetic field which, according to the Maxwell equations of the classical 
theory, is produced by the classical distribution of four current If
this possibility is chosen, the interaction between the classical system and 
the quantum system is expressed by an additional term in the field
equation for the electron field, ip being the electron field operator. In quantum 
electrodynamics, it has always been assumed that these two possibilities 
give the same physical result.*

We shall consider an assumption of this type as a basic principle of 
quantum physics. Admittedly, a direct physical interpretation of such a 
principle is possible only for the case of quantum electrodynamics. However, 
the principle may be generalized to other cases and formulated as a definite 
mathematical relation. To make the principle and some of its implications 
clear we study, in the present work, the simple example of the Hurst-Thirring 
field, i. e. the quantized version of the classical real field which satisfies the 
classical field equation

(-□ + zzz2)A(.r) = pA2(.r). (1.1)

Let us for the moment apply the formal version of the quantized form 
of (1.1). If the system interacts with an external field A(.r) and an external 
source /(.v), the real quantum field A(.v) satisfies the field equation

( □! zzz2)^(.r)=j(.r)4 2f/A(.r)^(.r)+./(.r), (1.2)

where the formal expression for the source operator is

j(.r) = p J2(a?). (1.3)

* A proof was given by J. Schwinger, Phys. Rev. 76, 790 (1949). 
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To emphasize that the field operator depends on both A(x) and /(x) we 
use the notation A[A,j;x].

Consider first the situation where J = o. If retarded boundary conditions 
are used we have the integral equation

A (x) = Ain (x) + J AR (x-x') { j (x') + 2 gA (x) A (x') } d4x'. (1.4)

The notations used will be found in Appendix A. To give a definite meaning 
to the dependence of A on the physical state of the external system, we 
choose a representation of the free field operator Ain in which this operator 
is independent of the external field and source. If the formal expression 
(1.3) for the source operator is used, one finds that the operator

Â (x) = A (x) + A [A, o ; x]

satisfies the integral equation
Ä (x) = Ain (x) + (x-x') gÂ2 (x') d4x' + A (x) (x-x') g A2 (x') d4x'.

Thus, if we define AiW and j by the classical field equation
A(x) = A/W(x) + $JK(x-x') { g A2 (x') +j(x') } c/4x', ( 1.5)

where
(-□+/n2)A/n(x) = o,

we have
^(x) = An(æ) + + ^Gr“æ') ! +./(•* ’')! ^4x'.

* We employ the notation: f(x) - ff (æ) =/(-r) ~■d.r, dx dx

In order to remove the classical radiation field Ain, we apply the time- in
dependent unitary transformation*

U[Ain]= exp{-i\Ain-^ Atn(y)d3^). (1.6)
dy0

If one observes that

[Ain]Afn(x) U [Atn] = J/n(x) - Au(x),

it is easily seen from the equation for A that Ur [Ain\A(x) U Ain\ satisfies 
the integral equation which determines A[o,j;x]. Thus, we have the re
lation

^[o,j;xj = A(x) + U*  [Ain] J[A,o;xj U[Ain], (1.7)

where the sources / and Ain are connected with the field A by the classical 
field equation (1.5) for the Hurst-Thirring field.
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The equation (1.7) is the mathematical expression for the assumption that 
sources j and Ain and a field A, which describe the same physical situation, 
according to the classical theory also do so when the classical system is 
coupled to a quantum system.

In a similar manner, one derives the more useful equation

A [A,j+ôj; .r] = ôA (.r) + L71 [<5A/n] A [A + ÔAJ; ,r i U [<5Aira], (1-8)

where the connection between the source variations ôj, ôAin and the variation 
of the field is given by the varied form of the classical field equation, i. e., 

dA(.r) = ÔA/W(.r)+J AÂ(.r-.r'){ ^(ÔAGr'))2 |
+ 2gA(x')ÔA(x') + ôj(x')} d4x'. I Ç J

The proof given of (1.8), (1.9) is completely formal of course. However, 
these relations arc in themselves meaningful mathematical expressions and 
we may assume that eqs. (1.8) and (1.9) are valid quite apart from the 
proof given. The formal derivation makes it plausible that, by such an 
assumption, essential characteristics of the dynamics are introduced in the 
theory. In fact, similar formal calculations with another expression for the 
operator source lead to a completely different result. This is also indicated 
by the fact that the characteristic non-linearity of the Hurst-Thirring field 
appears explicitly in equation (1.9).

We shall take (1.8), (1.9) as a basic assumption of the theory. It will 
be shown that such a postulate may be utilized in very much the same way 
as the formal field equation of the renormalization theory. The advantage 
gained is of course that we may maintain the attitude of ordinary mathematics 
that divergent quantities are allowed neither in the fundamental equations 
nor in any intermediate step of the calculations.

In paragraph 2, a list is given of the assumptions on which we propose 
to build a consistent formulation of the quantum theory of the Hurst-Thirring 
field. It will appear that (1.8) and (1.9), which we shall refer to as the 
variational equations for the field operator, are not totally of a dynamical 
nature. In fact, as a special result, we obtain from the variational equation 
for the field operator the reduction formulae of Lehmann, Symanzik and 
Zimmermann1”’ and of NiSHUiMA3a). Thus, the asymptotic conditions 
are superfluous. The boundary conditions which are necessary to avoid 
solutions of irregular behaviour arc discussed in paragraph 3. It is found 
that these boundary conditions may be formulated as a principle of 
maximum regularity of certain distributions, called ^-functions, related to 
the source operator. The perturbation expansion is studied in paragraph 4, 
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where it is shown that the theory gives unambiguous answers Io the third 
order (and presumably Io all orders) in the coupling constant. The results 
found for the source operator agree with those of the renormalization theory.

The present investigation is of a rather preliminary nature. Several im
portant problems have not been solved. Presumably, the validity of the 
variational equation for the field operator may be “proved” in the frame
work of the renormalization theory. From the mathematical point of view 
such a proof would be as formal as that given here. Still, a proof should 
be given in order to ensure that the correct results of the renormalization 
theory are reproduced to all orders in the coupling constant in the present 
formulation. This question has not yet been considered. The assumption of 
unitarity is not needed for the unique characterization of the theory. Ulti
mately we shall therefore be faced with the problem to prove the existence 
of a scattering matrix. This question has not been considered cither. Only 
the Hurst-Thirring field has been studied and it is well known that this 
theory is not quite typical in several respects.

The mathematical techniques used are presented in the usual language 
of mathematical physics. Thus, the technical language of modern distribution 
theory is avoided, although a certain not too low standard of mathematical 
rigour should be maintained as regards questions of distribution theory. In 
other respects we benefit from the advantages of a purely formal approach, 
in particular with regard to topological questions in the underlying Hilbert 
space. For the purpose of the present investigation this is not dangerous. 
In fact it is easily seen that the situation may be remedied by a strict ad
herence to the weak topology, i. e. all definitions and calculations may be 
interpreted as relations between definite matrix elements in the Hilbert 
space. However, whether the weak topology is the appropriate one for a 
more thorough study of the theory is an open question.

2. The basic equations of the theory

To give a precise formulation of the variational equation for the field 
operator we need the connection between the quantum field A(x) and the 
incoming field Ain(x). We assume that A(x) is so regular that

Jz1Ä(x-~.r') (-D'+ni2 *) J (U) r/4.r' (2.1)

exists as a convolution integral, and that the operator

Ain = A (x) -(x-x') (- □' + m2) A (.r) d1 x' (2.2) 

is independent of the external fields and sources, and is quantized in the
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usual way.*  These assumptions involve two kinematical postulates, one con
cerning the distribution character of A(x), which serves to guarantee the 
existence of Ain(x), and a quantum rule which characterizes this operator.

For the special case of infinitesimal variations the fundamental dynamical 
assumption may now, in accordance with (1.8) and (1.9), be given in the 
following form :

Ç (5 A (,r)
<V(y)

àj (y) d4 y = ÔA (.r) + J |^y) 0A(y) y

~i\ A (.r), Ain (y)]-/- àAin (y) d3y,
dy0

where
ôj (x) = ( -  + m2 -2 y A (x)) ô A (x),

and
0Ain. O) = <5 A (x) - JzlB (x-x') (- □' + nr) ÔA (x') d4 x'.

(2.3)

(2.4)

(2.5)

A possible definition of the Volterra derivative is given in the Appendix B. 
As already mentioned in the Introduction, this postulate allows a derivation 
of the reduction formula.

As a final kinematical assumption we take the variational equation^’'"

= id (x-y) [A (x), J(i/)], (2.6)

first proved by Peierls5). As is well known, this equation holds in the 
renormalized theory.

It will be seen in the next paragraph that the variational equations (2.3) 
and (2.6) have more than one solution. These equations should therefore 
be supplemented with subsidiary conditions, which excludes solutions of too 
irregular a behaviour. One such condition is the requirement of relativistic 
invariance. In the following it should be understood that only relativistically 
invariant solutions are admitted. The non-trivial question of the necessary 
boundary conditions will be discussed in the next paragraph.

Before taking up the discussion of the boundary conditions we derive

* Cf. Appendix A.
t In the present work only the vacuum expectation value of Peierls’ variational equation 

is used.
tf For the Hurst-Thirring model it may be assumed that the commutator of two field 

operators is so regular that the right-hand side of (2.6) exists as a limit of i ?'>T (x-y) [A(x), A(y)J 
where #T(x) is a sequence of testing functions which for r->0 converges (in the topology of 
the space of distributions) to the distribution ö'(r). In practice this means that the retarded 
commutator may be treated as an ordinary product. Such a regularity assumption is not pos
sible for the commutator of two source operators.
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some direct consequences of the basic equations. First, we show that the 
reduction formula follows directly from the variational equation for the field 
operator.

Derivation of the reduction formula.
To derive the reduction formula we use twice the variational equation 

for the field operator. In the case of ôAin(x) = o, we find from (2.3)*

(2.7)

while for ôj(æ) = o the result is
<—>

o - <5 a (x)+C 64 (»)‘ y - A I'4 (®) • (»» A6 A<« <y) d’y ■ <2-8>
.UA(y) ,1 dz/()

where
<5A(æ) = ÔA<n(x) + dK2yA(.r)ÔA(.r), |

Kx0Ain (*)  = °-

The conditions (2.9) should not be ignored in the derivation of the reduction 
formula, as these conditions severely limit the domain of the variations 
AA(.r). Thus, in the formula which results from (2.7) and (2.8),

z ôyf(.r)
J <5 A (y) (Kv - 2 g A (y)) y -

+ z J [A (.r), Ain(y)] — 0Ain (y) d3y, 
diJo

(2.10)

an integration by parts is not permitted. Instead, we use

and find
Ky ôA (y) = 2gA (y) ô A (y),

S< (y) Ky
ÔA (x)
<V (y)

d
+ i\ [J(x), Ain(y)]—— ÔAin(y)d3y. 

dy0

(2.11)

(2.12)

* In the following we use for convenience the notations

/<*/(£)  = (-□ + m2)/(.r), and ARf(x) = ^AR(x~x')f(x')dix'.
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Due lo the retarded character of <)A (,r) / ô/(i/) we have

ÔA (.v)
<V(") '

(2.13)

In fact, the difference between these two expressions vanishes fora’0<r0 and 
satisfies as a function of z the homogeneous wave equation. If, further, the 
relation

Ar A^^A(.r) = <5A (,r) - <M/ra (.r) (2.14)

is taken into account, we find from (2.12)

^Ain(y) KyÔj~^d4y J [J(.r), Jfn(y)i^ ÔA/W(y)d3y. (2.15) 

With the aid of the well-known solution of the initial value problem of the 
wave equation

SAin (y) = (y-*)^~  ^An(~)f/3^> (2-lb)

we find from (2.15) the reduction formula for the field operator

[J(.r), Ain(y)] =-i\A(y-z)Kz~~^ d4z, (2.17)

which alternatively, due to (2.6), may be written in the usual form

(■’•), ^in(ÿ)] = $21(ÿ-z)Æz#(æ-z)[.4(æ), ^(c)]d4r. (2.18)

'I’hus, the reduction formula gets a heuristic motivation in the formulation 
studied here. Further, it might be remarked that in the derivation we have 
not made use of asymptotic formulae, which in fact do not form a part 
of the basic assumptions of the theory.

For the discussion of the contents of the formulation proposed here, we 
found it convenient Io work with the source operator instead of the field 
operator itself. For the Hurst-Thirring field, in the presence of an external 
field and external sources, the source operator j’(.r) is most conveniently 
defined by the equation

( -  + m2) A (,r) = j (a-) + 2yA (.r) A (.r) +j (.r), (2.19)

whence by (2.2)

24(.y) = Ain(x) + \AR(x-x'){j(x') 1-2.7A (x')A (x')+j (x')} d4x'. (2.20)

W'e shall refer to the equation (2.20) as the field equation.
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In terms of the source operator, the variational equation (2.7) takes the 
form of the variational equation for the source operator, viz.

+ (2.21)

while the reduction formula (2.17) yields the reduction formula for the 
source operator

- K^(\) dl~- (2.22)

Explicit expressions in terms of the field operator for the variational 
derivatives of j(.r) and for ôA(x) / ôA(y) may be found from (2.6), (2.7) 
and the field equation (2.19). As an example, we quote the formula

= [ Å-r_ 2 0 A (*)  1 - 2 9 A (y) ] i# (x- y) M (æ) » A ( y) ] (2.23)

- [Kx~2gA(x)]ô(x-y)-2gô(x-y)A(x).

The coupling constant appears explicitly here, where il plays a role in the 
characterization of the singularity at ,r = y. Outside the singularity the ex
pression simplifies to

ô 4 (y) = (æ)’ J for x° * y°- (2.24)

This expression is well known from the formal canonical theory63”b), 
where the expression is assumed to cover the singularity for x = y as well. 
It may easily be seen that the extrapolation of (2.24) and the corresponding 
expressions for ôj/ôj and ÔA/ÔA to all values of x-y give the correct result 
if the commutation relations between A, A and j of the formal canonical 
theory are valid.

We see from (2.22) that, if the operator

j(^;y) =
<V(æ)
•V (y)

(2-25)

is expanded in the series*

j (-v,y) - f(-r;y) + \ /'(x;y, l)Ain(l) d(l)

+ 2) j y, 1, 2) : Ain(l)Ain (2) : r/(12) + . . .,

Haag7). In the absence of bound states, the expansion functions / are c-numbers. 
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where : denotes the Wick product (se Appendix A), we have for the 
source operator

j(.r) = /\x)+\ f(x;\) Ain(\) d(\)

+ 2, 3): Jtt(l)J,„(2)J,„(3):</(123)+.. ..

tiere, f(x) = <0|j(x)| 0> is not yet determined, but may be assumed to 
be subject to the boundary condition

<0 |>(x) | ()> =/Xx) = o, for A = j = o. (2.28)

We close this paragraph by a few comments on the formal theory which 
is obtained if (2.24) is extrapolated in a naive fashion to all values of x 
and y. In this formal theory the system of basic equations is easily seen 
to be complete. We take j = A = o and find, by (2.21) and the extrapolated 
form of (2.24),

j (x;y) = z# (x-y) [j (x), j (y ) ] + 2yd (x-y) A (x), (wrong) 
where

A O) = Ain (æ) + J O) •

These two equations determine the source operator anyhow if perturbation 
theory applies. To the lowest order in the coupling constant we find from 
(wrong)

j (æ ; y) = 2 y d (x - y) Ain (x),

whence by (2.27) and (2.28) we find for the lowest order term in the source 
operator

J(x) = y: A'?n(x): .

When this expression is inserted into the right-hand side of Hie equation 
(wrong) we find to the second order in y

j (•*•  ; y) = » # O - y) [y ■ t (O :, y ; (y): ]

+ 2yd (x-y) Ain (x) + 2yd (x-y) ARg:A2in (x) : .

Proceeding in this manner we obtain the perturbation theory. However, 
already the second order expression demonstrates that the naive extra
polation of (2.24) is indeed not possible. The vacuum expectation value of 
the first term on the right-hand side of the above expression leads to the 
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well-known divergent expression for the self-mass of the meson and to a 
wave function renormalization, this being finite in the present model.

Still, the formal approach is not without interest. It shows that the axioms 
we have chosen are as complete as the usual axiomatic foundation of the 
formal canonical theory. It also demonstrates that, in order to have a complete 
dynamical theory, we must lind the correct solution to (2.24), regarded as 
an equation for <5/(.r) / ôA(y).

A direct approach to the multiplication problem (2.24) has not been 
found. The complete mathematical solution to the equation (2.24) involves 
an arbitrary distribution wich vanishes outside the subspace x = y, and 
what in particular complicates matters is, that this distribution is operator 
valued. We have instead chosen a more indirect method of investigation. 
In this method the arbitrary distribution is c-number valued and the correct 
solution may easily be characterized. The drawback of the method is that 
the external field has to be kept finite until the end of the calculations. 
This complicates somewhat the algebraic part of the calculations.

3. Discussion of the boundary conditions

In the following we take the external source equal to zero. Due to

(3.1)

we have, by (2.21) and (2.25),

[Ky-2B(y)]\ j (.r ; 1 ) /1fi ( 1 - y ) d ( 1 ) = g + 29ô (x “ (æ) > (3 • 2 )

where we have employed the notation

B(x) = yA(x).

Obviously only this combination is relevant for the problem. The discussion 
in the present paragraph as well as the explicit calculations in the next 
paragraph will be based on the equation (3.2), the reduction formula, which 
will be used in the form of the connection between the Haag series for 
j(x; y) and j(.r) given by (2.26) and (2.27), and the equations

àj (x’> _ (</)
ôB (y) ô B (.r)

àj Cr) 
g«B(y) = o , foi' y0>æ0,

(3-3)
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which are a direct consequence of the explicit expression (2.23). Actually, 
as will become clear, we need (3.3) only in the vacuum subspace of the 
Hilbert space.

For /(x) = o the field equation (2.20) reads

A (x) = Ain (x) + AR(j (x) + 2 B (x) A (x)). ( 3.4)

Consider for the moment the perturbation solution. Here we regard j 
as of at least the order r/. For 7 = o we have by the field equation

J'”» (x) = A„ (x) + 2 B (x) J(”> (x).

By the solution of this equation we tind 2yd (x—y) zi10 (x), i. e. the right- 
hand side of (3.2), to the first order in g. Hence we may calculate j(x ; z/) 
to the first order in g. To discuss in general terms how to proceed, assume 
that j(x) is known to the order gn as a functional of B. The right-hand side 
of (3.2) and thus j(x;y) may then be calculated to the order gn +. Hence 
by the reduction formula, or more directly by (2.26), (2.27), we find 
j(x) — <01 j(x) 10 > to the order To be able to proceed in the
iteration procedure we need <0 |j(x)|0> to the order </w + 1 or alternatively 
r/ô<0 |j(x)| 0)/<3B(y) to the order gn+. This is the point where the vacuum 
expectation value of the system (3.3) comes into play. By the knowledge 
of j(x) - <0 |j(x) | 0> to the order r/w + 1 we can calculate

C(x;y) =-C(z/;x) = z<()| [j(x), j(y)]|0> (3.5)

to the order gn + 2. Thus, what we need is to solve the system of equations

0 jJ (x) I 0> <5 <0 |j(y) I 0) = r z ,
<5B(y) 9 z)B(x)

<5\0 IJ(x) I 0 >
9 ÔB(y) for y0>æ0,

(3.6)

where the functional C’(x;z/) is known. Observe that C is real valued.
We shall take the perturbation argument as an indication of the fact 

that, if we can characterize that solution of the system (3.6) which should 
be used in physics, we have a well-defined formalism for the Hurst-Thirring 
field. We therefore proceed to discuss the system (3.6) and from now on 
drop the assumption of the perturbation expansion. Thus we have converted 
the problem of the z#(x-y) [j(x), j(y)] multiplication into a similar, 
but simpler, problem where only c-number valued distributions are 
involved.
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The complete solution of the system (3.6) consists of a particular solution 
added to the complete solution of the corresponding homogeneous system, viz.

5/ (,r) d / (y)
5 Ii (y) Ô li ( .r) o

(3.7)

Due to the requirement of relativistic invariance we need only discuss the 
relativistically invariant solutions of the homogeneous equations. Hence we 
have replaced the condition a-0)//0, which for the homogeneous system is 
extended to .r0+t/0, by the condition .r + y.

A functional of a function B(.r) determines an infinite set of distributions 
which we take as the expansion coefficients of the formal Volterra series. 
For /(.r) we denote these distributions by

/4n(æ-.Vi. • ■> x-yn) = ^^(æ)/^^(yi)<5B(y2). • ■àB(yn)\B=0, (3.8)

where we have used a notation which reflects the invariance of / under 
displacements in space-time. For the discussion of the equations (3.7) we 
found it necessary to restrict the domain of solutions to functionals analytical 
in the sense that they are determined uniquely by the set of expansion 
coefficients of the formal Volterra series. It need not be assumed that the 
formal Volterra series is convergent. To indicate the one-to-one corre
spondence between the set of distributions hn and the functional /, we write*

/(.r)^^ J /4w(.r-i/i, . . ., .r-yre)ß(y1). . . 7? (yw) <74 yL. . .d4yw. (3.9)

The distributions /4re(r1, r2,. . .zw) are of course symmetric in z2,. . . , 
zn and are invariant under the homogeneous Lorentz group. By the second 
equation (3.7), f4w(.r-y, a--y2,. . . , .r-yn) vanishes outside the subspace 
,r = y, and hence, by the symmetry, l^n(zr, z2,. . zn) vanishes outside the 
intersection of the subspaces zv = o, r= 1, 2,. . .n, i. e. except at the single 
point Zi = z2 = . . . = zn = o. Thus, by a well-known theorem in the theory of 
distributions, /4n(zi, r2,. . -,zn) is a finite linear combination of . .
ô(ztl) and its derivatives, viz.

.................................................../--W) <5 (-2)...d (3-10)
dz2 dzn)

Here, P is a symmetric relativistically invariant polynomial.
* The summation starts at n = 1 due to (0 |j(x) | 0) |r=0 = o.
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We have not yet taken the first of the equations (3.7) into account. This 
equation resticts the distribution /4n by the condition that ^(aq-aq» aq —.r3, 
. . ., .r1-.rn + 1) is symmetric in oq,.r2,..., aq+1 as well. Hence, /(.r) may 
be represented in the form

Ô 0 [BJ 
<5 B (a-)

where 0 is associated with the formal Volterra series

(3.11)

X

0 yj !,) 4 (w _ b (æ1 ~ A 2 ’ æ1 ,r3 ’ • ' ' ’ X'l ~xn)B Gt1 ) B (<r2 )■ ■ ■ B (xn ) 
n — 2

■ d4aq d4.r2. . . d4.vw.
(3.12)

Thus, due to (3.10), we have

0[B]=jjS(B(x), ^B(.r), d/z B (.r), . . . ) d4 x, (3.13)

where the density function 2 is an ordinary function of B(x) and the de
rivatives of B(x)*.  The function may involve derivatives of B(.r) of ar
bitrarily high order, but should be in accordance with (3.10) and (3.12). 

The results may conveniently be expressed in terms of the Fourier 
transform of the distributions. We define

(fn ('1 » ^2’ • • • ’ ~n) /4) .4« \ 4s ((71 ’71» • • • » 7n)
•’ / (3.14)

X exp ( - i (/1 z1-iq2z2-. . . - i qn zn) d4 qx d4 q2 . . . d4 qn,

and have the result: ^(c/j, g2,. • 1S a symmetric and Lorentz invariant 
polynomium, i. e.

* An interpretation of 0[B] may be given in the following manner. It may be shown that 
the first variational derivative of a scattering operator for the system is given by

— i ZHZ, - Sj(x>-
Here the operator 5 is defined up to a phase factor by the equation

■A out = ^-in (x) ’

and the conditions of unitarity and causality. It is easily seen that the condition of causality 
restricts the arbitrary phase factor to the form exp i 0, with 0 given by an expression of the 
form (3.13). If the source operator is known to the order gn in perturbation theory, we find 5. 
apart from such a phase factor, to the order gn, and hence j to the order øw+1 is given by 
the formula

. ct ôs <5 0

where 0 is of the type described but otherwise unknown.
Thus the discussion in the following would be made superfluous if a characterization of the 

c-number phase factor of this scattering operator could be found by other means.
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(71, q2, . . qn) = ^(-ql, -qf, -q2n, qx q2, qrq2, ■ ■ ■ , qn-X qn), 

and is symmetric in the indices. This is the result which follows from the 
second of the equations (3.7). The restrictions on which follow from the 
first of these equations will not be discussed further here.

The boundary conditions.
We now return to the system (3.6). Let <0 | j (.r) |0) be represented by 

the formal Volterra series*
00

<o|j(x)|o>^ 5 - æ-yw)^(ÿi) • • • ß(y«) nin
--—i n\g J (3.15)

• d4 . . . <7 4 yn.

It follows from the discussion that, if distributions nR (.r-yr,. . ., x-yn) 
define a particular solution to the system (3.6), then

where I1 is a polynomium of the type described.
Thus the boundary conditions we need are those which may serve to 

characterize coefficients of the polynomial 7J(d/dr).
A simple boundary condition suggests itself at this place. It is tempting 

to require that the solutions should be regular at the origin, in other words, 
that there should be no ô-like singularity. Such a requirement gives the 
same (meaningsless) result as the naive approach to the i• [j, j]-multi
plication problem. The point is that no such solution exists, and an en
forcement of such an inconsistent requirement leads to mathematical in
consistencies which manifest themselves in terms of the well-known divergent 
integrals.

This is illustrated by a consideration of the simple example of the func
tion xR(x-y). For this function we simply have the expression z<0|[j(x), 
j (i/)] I 0)|fi=o, for the right-hand side of the first of the equations (3.6). It 
is easily seen that this expression may be represented in the formf

*<0| [j(.r), j(o)]|0>|B=0 = - j£(f)<5(.r2 + T)/'(T)dT, (3.17)

* In the formal theory the interpretation of the functions nR is easily seen to be 

..., x-yn) =<0 (x); j (yp ... j(y„)) | 0>,
where R denotes the retarded product. This formal expression is ambiguous, and not of much use. 

t See f. inst. the work of Gårding and Roos, reported in the lecture notes of Gårding and 
Lions8).

Mat.Fys.Medd. Dan.Vid.Selsk. 33, no. 9. 2
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where /‘(r) is a distribution with support on the positive part of the real 

r-axcs, o<r<oo. If we split tir(.v) in the symmetric part x(.v) = - (jir(.t) 

+ 7tR(-.r)) and the antisymmetric part 7i(.v) = nR(x) + nR(-x), we have 
according to (3.6) and (3.18)

(x) = % (x) - - % (x), (3.18)

w here
7r(.r) = Je(/)ô(.r2 + T)/‘(T)dT. (3.19)

For Æ we now have the equation

Æ (x) =--e (f) ti (x), for f + o. (3.20)

If /'(r) is assumed to be sufficiently regular at the origin, we have the solution

Æ (x) = <) (.V2 + r) /(t) dr. (3.21 )

However, for simple approximations, f. inst. in second order perturbation 
theory, we find that /‘(r) is of tin*  general type

* It may be seen that the assumption (3.22) essentially is equivalent to the assumption 
that the well-known spectral function 77(x2) in the Källen-Lehmann representation for the 
vacuum expectation value of the commutator of two source operators behaves like a constant 
for large values of x2.

/■(t)^ô'(t), (3.22)

apart from regular terms, where d' denotes the derivative of Dirac’s d-func- 
tion. Assume, for the sake of the argument, that (3.22) is correct". In this 
case, the expression (3.21 ) as it stands is without any mathematical meaning. 
Io illustrate this point, we proceed in the calculations with complete dis

regard of the validity of the formal operations, and find the formal result 

^(•r) (æ2) = Q1 .(<5'(^-^) + <5'(/+r)).
2 o /’ I

To see whether this expression makes sense we apply it to a testing function 
(p(r, I), and find

J jr (.r) 99 (r, /) d4x = (<p(r, r) - 99 (r,-r)) dr

99 (r, r) + (p (r,—r)
r
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The last term diverges logarithmically at the origin. This of course is a 
manifistation of the well-known divergent self-energy. Thus the symbol 
<5'(.r2) does not represent a distribution.*

In the renormalization theory the situation is saved by an additional term 
in the solution of the type ôm2ô(x), where ôm2 is a conveniently chosen 
logarithmically divergent constant. The renormalization theory gives of course 
the right result, but the detour over the mathematically undefined (divergent) 
expressions should be, and in fact is, superfluous.

As the above example shows, in our formulation the inconsistencies 
originate from mathematically inconsistent regularity assumptions. The 
mathematical form of (3.16) suggests a formulation of consistent regularity 
conditions in terms of the notion of the order of a distribution at a point 
(here the origin). Such a formulation may easily be given and might indeed be 
the most adequate one for the investigation of the fundamental problems of the 
theory, such as, for instance, the problem of the existence of rigorous solutions.

However, the concept of the order of a distribution at a point is difficult 
to work with in practical calculations, where concepts pertaining to the 
momentum space formulation are much more convenient. To avoid mathe
matical complications we assume that the hr-ïunctions are tempered distribu
tions such that they possess a Fourier transform, and study the asymptotic 
behaviour of the Fourier transforms of the distributions instead of the singu
larity at the origin of the distributions themselves.

We here adopt a simple characterization of the asymptotic behaviour 
in momentum space of a tempered distribution given f. inst. by Medvedev9). 
Let T(z) = 7’(zx,. . . ,rn) be a tempered distribution with the Fourier trans
form T(Qi,. . - ,qn)- We define the rate of growth at infinity in momentum 
space of T(z) as the smallest integer N = N(T) such that £n + ix increases 
faster than T(£ qlt. . . q^f) for £-> oo and any value of a>o. Correspond
ingly, we call S more regular than 7’ if iV(S)<A'(T). If AT(7") is negative 
we simply say that 7’ is regular. This ordering of distributions with respect 
to regularity is quite rough, as is illustrated by the remark that T and 
T + P(d/d z)ô(z) are equally regular whenever the degree of the polynomium 
P does not exceed N(T). Still, the above characterization is sufficient for 
the discussion of the perturbation theory in the next paragraph. A more 
refined ordering of distributions with respect to regularity is proposed in the 
Appendix C.

* In contrast hereto, the distribution symbolized by e(i) <5'(x2) is perfectly well defined, 
as one sees by a similar calculation. A parallel, but simpler situation would arise in a two-dimen
sional theory (one x and one t), where <5(x2—I2) is divergent, but e(t) ô(x2—t2) is convergent, if 
the usual way of treating ô-functions in mathematical physics is adopted.

2*
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Consider now the ^-functions. If the system (3.6) does not admit regular 
solutions, we may instead look for the most regular solution. The rate of 
growth for the various ^-functions of such a solution might be looked upon 
as constants characteristic of the singularity required by the interaction. Ad
ditional terms of the type P(d/dz)d(z~), when they make the ^-functions 
less regular, introduce singularities of a complexity not required by the 
interaction. It is natural to assume that such singularities do not belong Io 
the theory. This motivates the following formulation of the boundary con
ditions for the equations for the source operator: The functions tiii(z1, . . ■ ,zn) 
(ire as regular as compatible with the basic assumptions. This boundary con
dition will be referred to as the principle of maximum regularity.

The principle of maximum regularity is not new, but has always been 
adhered to in the usual formulation of the theory. An explicit formulation 
of the principle may bo found in the book by Bogoliubov and Shirkov10). 
In the renormalization theory one simply introduces such renormalization 
constants, only, as are required to remove divergences according to the 
experience from the perturbation theory.

If the rate of growth at infinity in momentum space of a ^-function is 
A’, an additional singularity of the type P(d/dz)ô(z), where the degree of 
P does not exceed N, is left arbitrary. 'Flic coefficients of the various terms 
in the polynomial are thus arbitrary constants in the theory so far formulated. 
If this situation should occur, these constants should be determined by 
further conditions of the character of normalization conditions. Presumably 
no such arbitrary constants remain in the case of the Hurst-Thirring field. 
The situation in this respect might be different in, for instance, the sr-meson 
theory, this theory being more singular. Alternatively such constants could 
be regarded as subject to physical interpretation, and thus as parameters 
belonging to the theory in the same way as the mass and the coupling constant.

4. Perturbation theory

As mentioned in the Introduction, we have not yet been able to prove 
that the theory proposed here gives the same results as the usual theory 
to all orders in the perturbation expansion. In the absence of a general proof 
we show in this paragraph that the two theories agree to the third order in 
the coupling constant. As the methods of calculation are somewhat different 
from the usual methods we present the third order calculation in some detail.

In perturbation theory we assume that the source operator is at least of 
the order g, and expand in powers of g. When only results for B = o are 
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desired, it suffices to expand in powers of B as well. To indicate for a quantity 
F the sum of all terms of order B°, with o < r and o < .s-, we employ the 
symbol F(r;s). It is easily seen that in the n'th order calculation we must 
calculate all terms j(x;p)(r; , with r + s<n and s<n.

Second order perturbation theory.
To the first order in g and for B = o we lind from the variational equation 

for the source operator (3.2)

j (^ ; y)(1 ; 0) = 2 7 <5 (x - 7) A in (x) ; (4.1)

whence, by (2.26) and (2.27),

j(æ)(1;0) = g -A2in(x): . (4-2)

For g = o and to the first order in B we have, by the field equation (3.4), 

4(x)l’;ll-J„(x) + 2Sd8(.r-l)B(l)4(l)lf(1). (4.3)

These formulae allow us to calculate the operator j(x;y) ’11 from (3.2). 
From the resulting expression 

j (x ; y)(1 ; = 2 g ö (x - y ) Ain (x) + 4 7 <5(x-y) $ (x-1 ) B ( 1 ) ( 1 ) d ( 1

+ 4y Ain (x) AR (x-y B (y)
G-4)

one finds, by the use of (2.26) and (2.27),

j (x)(1;1)-<0 \j (x) I 0>(1;1) = 7: J?„(x):

+ 47$ h (x~1 ) B (1 ) ■ Ain (x) Ain (1 ) : d(l ).

As explained in the beginning of paragraph 3, we determine the unknown 
vacuum expectation value <01 j(x) 1by means of the system (3.6). 
A simple calculation gives for the right-hand side of the first of the equations 
(3.6) the result

C (.r)(2;0) - i<0 I [j (x)<1;°>, y(o),1;0)] I 0>

--^(xtx2)??12»^2)«/«2, I (4'6
• 4 m2

with

"<2,o2) = r^
O 71

(4.7)
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Thus, to this order, the system (3.6) becomes

nR (.r)(2;0)- ( -,r)(2;0) = - ( A (x; x2) //(2) (x2) r/x2,
• 4 Ml2

^(•r)(2;0) = °> for.T0<o.
(4.8)

We have here used

|j(x) I 0>(1;1)
<5B(y)

(4.9)

It is easily seen that, for 7r7?(.r)(2;0), the naive ^-multiplication leads to a 
meaningless result. However, a particular solution to the system (4.8) is easi
ly obtained by means of the identity (-  + o2)zl (.t; x2) = (u2-x2)d (x; x2). 
For the sake of convenience, we choose a2(4m2 and have the solution

"SO)(2;0,-(-a+a2)Ç ^4^-77(21 OW- (410)
»4 m2 (l

Hence, the complete solution to (4.8) is given by

^(•^)(2;0) -^(•r)(2;0) + .72co0(.r) » • • • +(/2c7V(-D)jV d(.r), (4.11)

where c0, cy,. . ., cN are constants and TV is an arbitrary positive integer. By 
the use of (4.5) and the above expression for the right-hand side of (4.9) 
we lind, from (3.2),

J (.r;y)(2;0) = nR (x-y)(2'Q) -i 2gô (x-y) Ain (,r)

+ 2ø2$^(æ-1): Jfn(l):d(l)d(x-j/) (4.12)
+ 4<72Jfi(æ-i/): Jin(.r) J^(y):. |

Following the general pattern we next obtain j(.r), to the same order, with 
the aid of (2.26) and (2.27). Due to - n/l/M(a:) = - m2 J/W(.r) and the 
general formula

(/ = c' (4.13)

where c' is a constant, we lind

jXx)<2;0> = c''^/w(.r) + 7: J2w(æ): I
o (4.14)

+ 2.72!; JÄ(.r-l):^w(x)^n(l):d(l). |

Here the constant c" is given by c" ~ c + g2 c0 + . . . + g2(- m2)NcN. To fulfill 
the regularity condition that (2.1) exists as a convolution integral, c" = o 
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is required in order to avoid a d(p2 + m2)2—catastrophe in momentum 
space. Hence, by the field equation (3.4), we find the complete second- 
order expression for the field operator, viz.

/ ( 4 . 1 O )
+ 2</2JJK(.r- l)Jfi(l-2):^tt(l)Jj„(2):rf(12). |

The function 7rß(.r)(2;0) may now be calculated with the aid of the explicit 
expression (2.23). A simple calculation gives the result

<5<0U(x)|0><1;I’

^ß(y)

/7(2) (x2) dx2.
(4-16)

From (4.16) we lind c2= ... =Cy = o, and explicit expressions for c0 and 
C; could be found. The results (4.16) and (4.15) are of course the well- 
known results of the renormalization theory.

Thus we see that, in the second order approximation, the function 
"rK(.r-y) is uniquely determined without the use of the principle of maximum 
regularity. Indeed, it may be shown by similar considerations as that above 
that this result is exactly true on the assumption that the spectral function 
//(x2) in the Källen-Lehmann representation for i<0 | [j'(.r), j(o)] | 0) |B = 0 is 
bounded for large values of x2. If this is true one finds, as above, that the 
first of the ^-functions is given by

This expression gives the well-known result for he polarization of the 
vacuum by a weak external field.

Third order perturbation theory.
For the higher-order calculations, the principle of maximum regularity 

is needed to determine the ^-functions depending on two or more variables 
, c2,. . . It will be convenient to have a notation for the terms in a quantity 

F(r;s) which are proportional to grBs. We shall denote these terms by the 
symbol F(r;s). Thus j(,r)(3;0) = j(,r)(3:0) - j(x)(2;0). Hence, in the third order 
calculation, as we already know j(.r)(2:0), we need only calculate j(æ)(3’0).
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To calculate this operator, we start from j(.r ; y)( ;2) and follow the method 
outlined in the beginning of paragraph 3. By lhe variational equation for 
the source operator (3.2) we find

j(x;y)(1;2) = 2gô(x-y)A (x)(0;2) + $j (x;z)(1;1) (z-y) d4z2B(y), (4.18)

where due to (4.4)

y(x;z)ll;1>=4g<5(x-z)Szl/i(x-l)B(l)^tt(l)d(l) |

+ 4y^n(æ)dÂ(x-z)B(z)> |

while /l(.r)(0’2) is given by the field equation (3.4), viz.

.4 (x)<0;2) = J (x-1) 2B (1) (1-2) 2B (2) (2) d(12). (4.20)

Application of (2.26) and (2.27) — i. e. of the reduction formula for the 
source operator — yields lhe result

y(x)<1,2,-<oiy(x)<1;S,io> i
. X;/\.l,,(.r- 1)B(1).4,.(1 2)B(2):z4(n(x)^„(2):d(12) (4.21)
+ 4g$dfi(x-l)dÄ(x-2)B(l)B(2):4i„(l)^i„(2):d(12). |

According to the methods described in paragraph 3, the next step in the 
calculation consists in the evaluation of y<0 | <5j(æ)( ;2)/<57?(y) |0> by the aid 
of the system (3.6). By (3.5)

C(x;g)(2;1>-><0|[j(.x)<1;1>, j(g)<ll0>] |0>-(x<-^ÿ), (4.22)

where the relevant source operators are given by (4.5). One finds

C (,r ; y)(2 ; 1 > = J K (x, y,z)B(z)d*z,  (4.23)

where the kernel 7\(.r,y;z) is given by

7<(.r,y;z) = 4 y2 AR(x-z) { Zl(1) (z-y) A (y-x) - A (z-y) d(1) (y-.r)} |
(4.24)

~4y2 A\Ii(y-z') { A(1) (z-x) A (x-y) - A (z-.r) A(1) (x-y) }. |

In this case, the formal solution of the system (3.6), i. e.

with

à_<o_lj(.r)(1;2) I °> 
<5B(y)

y,.r-z)(3;0)B(z) <74z,

^Gr-y,.x-z)(3;0)= 4y3ZlH(.T-y) ( AR (x-z) A(1) (z-y) 

+ dÄ(y-z)zl(1)(z-.r)}

+ 4y3 (x-z) AR(z-y) A(1) (x-y) 

(4.25)

(4-26)
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has a meaning, and defines a distribution. Simple considerations show that 
this distribution is regular in the sense defined in paragraph 3. Further, it 
is easily verified that all of the basic equations are fulfilled by the corre
sponding expression for j(.r)(1’2). The solution (4.26) is thus the one re
quired by the principle of maximum regularity.

We may now calculate (2,1). By (3.2)
ô/ûr)(1;2) 

j(.r;y)(2;1)= 2(/d(.r-y) J(.r)(1;1) + <7

+J > (æ ; 0(2'0) Cz~y) d*z 2 ß (y) •

Here /l(.r)(1;1) may be obtained from the field equation (3.4) and the formula 

j(a')‘1;1’“-’UR(.r-l)<2:<»B(l)</(l)
9 •'

+ 4g J AR (x-1) B (1) : Ain (x) Ain

(4.28)

which is a consequence of (4.5) and (4.9). Thus,

A (x)"111 - h Zfs (x-1 ) *R (1 -2)<2;0) II (2)d(V2)
SB

+ 4g\AR (x-l)dK(l-2)B(2):-4<n(l) J<n(2):d(12)

+ 2gSdÄ(x-l)B(l)dfi(l-2):J?re(2):d(12).

(4-29)

An expression for g ôj (x^1'2) / ô B (y) may be found from (4.21) and (4.25). 
Finally, j (x; z/)(2;0) is obtained from the expression (4.12). In this way 
j(x; t/)(2;1) may be calculated. The result is

j(æ;y)(2;1) = <o lj(æ;y)(2;1) I o>+j(æ;y)(I2I;1), (4.30)

where j(a*;y)j 2;1) denotes a two-particle term. The vacuum expectation 
value is found to be

<0|/(.r;y)B“’|0>-2d(x-y)$zlR(.r-l)^R(l-2)l;!!<”7y(2)rf(12) I

+ 2S3lR(.T-l)<3;0,z1R(l-ÿ)d(l)B(y) (4.31)

+ (i/y>)y,x-1bo; do),
while the two-particle part of the operator y i.i'; i/) '1 becomes identical
with the (meaningful) expression found by the application of the formal 
unrenormalized canonical theory. The first two terms on the right-hand side 
of (4.31) originate from the first and the last term on the right-hand side 
of (4.27), respectively. Thus both these “dangerous” terms arc brought into 
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the third order calculation not by the second term on the right-hand side 
of (4.27), bid by the two other terms and in the already properly normalized 
form obtained by the second order calculation.

By the expression for j(x;y)(2;1) and by (2.26) and (2.27) we lind 
j(.r)(2;1) - < 0 I j(x)(2;1) I 0 >. It is easily seen that, in fact, the vacuum ex
pectation value is equal to zero. For by (3.6)

d<0|j(.r)(2;,)
àB (y)

|0>

where by (3.5)

C (x;y)(3;0) = z <0 I [j(x)(2;0), j (</)(1;0)J I 0> -(.r<->y),

(4.32)

(4.33)

i. e. by (4.14)

C (.>• ; !/)<3;W - 2 ig3 <4*  (.>■ -1 ) <0 I [ : Au (x) Äjn (I ) : .-.A], (</):] | 0> |
(4.34) 

-(.r<->y). I
Hence

C (x;y)(8;0) = o, (4.35)

due to the fad that the vacuum expectation value is required for an odd 
number of incoming fields. It is now easily seen that the principle of maximum
regularity requires

K0|j(.r)(2;1)|0> 
0B(y)

- o. (4.36)

The equation (3.2) gives the expression
j(x;y)(8;0) = 2y<5(x-y) J(x)(2;0) + y^^y- . (4.37)

°B(y)

Here /J(.t)(2;0) is given by (4.15) and j(.r)(2; ) is known already. From the 
resulting expression for j(.r ; y)(’;0) and with the aid of equations (2.26) 
and (2.27) one finally finds the result, well known from the renormalization 
theory, that

(4.38)

where the two-particle part is given by

+ 23:!\J„Cr-l):l„<.r-2)rl'(l.-2):Jtt(l) J„(2):d(12) (4.39)
+ 4yyd;i(.r l)J">(.<- 2)/J,,.(l-2):J(„(l)d1„(2):</(12), | 
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while the four-particle part*  j(x)p)0) is identical with the four-particle part 
found by use of the formal theory.

The author has benefited from discussions with several members of the 
staffs at the institutes of physics and mathematics at Aarhus university. Il 
is a pleasure here to thank Labs Mejlbo and Ebbe Thue Poulsen for help
ful discussions as regards various questions in the theory of distributions. 
In particular my thanks are due Poul Werner Nielsen for much helpful 
criticism and valuable suggestions.

Institute of Physics 
Aarhus University

APPENDIX A
The notations used for the theory of free mesons

We use the pseudo-Euclidean metric, x = (x4, x2, x3, x4) where x4 = ix0. 
Further, x2 = x^ x/t = x2 - x3, and -□ = -/!+ d2/dxl. The free field operators 
Ain(x) are self-adjoint operator valued distributions which satisfy the com
mutation relations

Mu O), Ain (y)] = iA(x-y),
where

A (x-y) = - i (2tt)-3 $ <74p e(p0)ô (p2 + in2) exp ipx.

Here, s(p0) = Pol I Po I • The retarded Greens function is /^(x) = -&(x)A (x), 
where $(x) is the Heaviside function

flic value of &(x) for x0 = o is not important.
The Wick product is denoted by and designates that the operators

inside the double dots are ordered such that any positive frequency part 
stands to the right of any negative frequency part. Useful rules for the cal
culation with Wick products are found for instance in the book by Bogo- 
liubov and Shirkov10).

* I. e. an operator of the form

1, 2, 3, 4): ,.„(2) ^,.„(3) rf (1231).
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APPENDIX B

Volterra derivatives

Nr. 9

Volterra derivatives seem to be an indispensable mathematical tool for 
the theory proposed here. It might therefore be useful to give a brief in
troduction to the theory of variational derivatives.

Consider a functional ^[j], which maps from a certain space of functions 
j into the complex plane. Useful definitions of differentiability of such 
functionals are all of the following general type: The functional ø is called 
differentiable of j if the variation of ø is of the form

0 + [j] = J <VO) d4x + o [j, ôj], (B. 1 )

where \ ô/(.r) <74.r is a linear functional of ôj and o[j, ôj] has certain
properties. Roughly speaking, it is required that for / fixed and ôj-+ o, o[j, ôj 
tends to zero “faster than’’ ôj. Hence, to give a precise definition of dif
ferentiability, one has to specify 

(z) the meaning of ôj-+ o, and
(zz) the meaning of the term “faster than”.

For any such specification, we call 
and use the symbol

A simple possibility is the following:

^[j;.!’] the Volterra derivative of 0,

W/] 
<V O) (B.2)

(z) ôj-+o means d/ = £j(1), where j(1) is fixed and £-> o, 
(iz) o[j, is required to be o(£) for / and /(4) fixed, i. e.

This immediately leads to the relation

(B.3)

We stress here that, to our knowledge, no argument is known which in
dicates that this particular definition is the most adequate one for use in 
I he quantum field theory. However, other reasonable definitions seem to 
be more restrictive. Thus, in general, the existence of the right-hand side 
of (B.3) will be a necessary condition for differentiability.
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As mentioned in the Introduction, when operator valued functionals are 
considered, the weak topology in the Hilbert space may be used to give 
the relations in the text a well defined meaning. If further the definition 
(B. 3) is adopted, and if the field operator is regarded as an operator valued 
distribution, a symbol like ôA(x)/ôj(y) becomes endowed with the inter
pretation

Ç ôA(x') . <5 .
I y-rry—Y’(æ) cf .r |/!> = „ . wt | f.r) y f.v) d4.r | B>, (B. 4)
? ôj (y) ô.i (y)

where yi(.r) is a testing function for the operator valued distribution A(x), 
and the variational derivative on the right-hand side is the one defined above.

Finally, a remark about certain interchanges of limiting processes, fre
quently performed in the text, may be in its place. As an example consider 
the relation

„ ÔA(x) ô
-tt; + (B.5)

If the possible interpretation mentioned above is employed, this equation 
means

/z (-□. + m2) <A IA [j + ljw;x] I B>

= (-□,+/»’) ‘'•<4 M [J+J/11; I B >
(B.6)

for £ = o. This only requires an interchange of two ordinary differential 
operators. The validity of such relations is assumed in the text.

APPENDIX C

On the formulation of the principle of maximum regularity

In paragraph 3 the concept of the rate of growth at infinity in momentum 
space was used to formulate the principle of maximum regularity. Such a 
formulation is satisfactory due to its simplicity, but might not always work. 
It presupposes that the ^-functions are tempered distributions for which 
the Fourier transforms are functions for large values of the momenta. Both 
these properties might be difficult to prove without recourse to an approx- 
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imation method. In this appendix we propose an ordering of distributions 
with respect to regularity which avoids these problems. Only standard 
notions in the theory of distributions are used, and for these we refer to 
the book of L. Schwartz11*.

We consider distributions /’(£) defined on a /'-dimensional Euclidean 
space, £ = (£i, £2> • • •> £/)• Differential operators are denoted by />a = 
da1 + a2 + • • • +a//d$22 ■ ■ • d^ff, and | a | = oq +a2 + . . . + <*/  is the degree of 
the differential operator. As only local properties are considered, we need 
not specify the type of the distribution. Let £ be an open bounded set and 
/)(£) the totality of testing functions which vanish outside £. To define the 
concept of the order of a distribution in £, we need the seminorms

= max max |Day(ê)|. (C. 1)
I a I = k

The notion of the order of a distribution, as given in the book of Schwartz, 
is easily seen to be equivalent to the following definition (valid for bounded 
sets £ only): The order of the distribution T in £ is the smallest integer 
/nT(£) for which there exists a constant C, such that

?mr(0)(O. (c.2)

for all ipe /)(£). We define the amplitude AT(£) of 7’ in £ as the infimum 
of the possible constants C in (C. 2). fhe order and the amplitude of the 
distribution 7’ at a point, say the origin o of £-space, may now be defined 
as follows: The order of T at o is the smallest integer mT for which there 
exists a neighbourhood £ of o in which the order of T is mT. The amplitude 
of T at o, At, is the infimum of the amplitude oner all neighbourhoods of 
o, i. e. At = inf Ar(£).

£ jo
'fhe two numbers, mT and AT, may now serve to order distributions 

with respect to their behaviour al £ = o. We say that S is more regular than 
T at the origin if ms(mT or if ms = mT but A5(Ar. In this manner all 
distributions may be compared to each other, and in particular to derivatives 
of ô. However, the comparison is quite rough. In general, if msfmT, the 
distributions T + S and 7’ are equally regular at the origin.

The formulation of the principle of maximum regularity may now be 
taken over from paragraph 3.

It is obvious that the ^-multiplication thus defined (although not always 
uniquely defined) constitutes a generalization of the ordinary product of two 
functions. Indeed, for sufficiently regular distributions, i. e. for distributions 
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of the order zero and of the amplitude zero al the origin, the requirement 
of maximum regularity gives the same result as the “naive” ^-multiplication 
which succeeds in this case. It is easily seen that such distributions locally 
are measures continuous at the origin.

The concepts of the order and the amplitude of a distribution al a point 
are much more powerful than the concept of the rate of growth at infinity 
in momentum space to analyse the dominating singularity of'the distribution. 
This fact is revealed by the following theorem, which we give without proof: 
//' in is the order at the origin in (xx, x2,. . . ,xn)-space of the distribution 

(.Ci, .r2,. . ., .rw ) there exists a unique relativistically invariant and sym
metric polynomial l)mÇd/dx1, d/dx2, ■ ■ ■ ,d/dxn), homogeneous of the m'th 
degree, such that nR—Pmô has the amplitude zero at the origin.

The main point is that the polynomial exists and is unique. The re
lativistic invariance and the symmetry of the polynomial are then a trivial 
consequence of the fact that the statement that the amplitude at the origin 
is zero involves symmetric and invariant concepts only. In general one 
cannot reduce the order by a regularization process f this type.
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Synopsis
A theoretical study is made of damage effects by particle radiations in matter, and their 

dependence on energy, mass and charge number of an incoming particle, as well as on the com
position of the medium. Typical examples of damage effects are the number of ion pairs formed 
in a gas, or the number of vacancies created in a crystal. We are particularly concerned with the 
consequences of the competition between energy transfer to atomic electrons and to translatory 
motion of an atom as a whole. For these purposes, common integral equations are formulated 
and studied. We treat primarily average effects resulting from an atomic particle with given 
energy, but also their average fluctuation and probability distribution.

As an important example we study the division of the total energy dissipation, E, into 
energy given to recoiling atoms, v, and energy given to electrons, E-v. Several radiation effects 
are accounted for from knowledge about E and v.

The primary quantities in a study of radiation effects are the cross sections for all relevant 
collision processes. We use comprehensive estimates of cross sections, derived elsewhere in a 
Thomas-Fermi treatment. Various simple approximations are introduced; analytical and numer
ical estimates are made of solutions to the integral equations. For many purposes nuclear colli
sions and electronic collisions may be treated as if they were unconnected events, although this 
is not quite correct, especially at low energies. Considerable simplification is obtained by a suit
able scaling of energy. A key to a common experimental and theoretical study is provided by 
an incoming particle identical with the atoms of the substance. Only few experiments can at 
present be compared quantitatively with theory.
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§ 1. Introduction

When an atomic particle is slowed down in a substance, a wide variety 
of damage effects may be observed. Familiar phenomena of this kind are 
the number of ion pairs formed in a gas, the number of electron-hole pairs 
in a semiconductor, or the number of defects in a solid. Other damage 
effects have been studied less, or not at all, like the number of electrons 
ejected from atomic A-shells, or the number of dissociations of molecules. 
The observations of damage phenomena may be divided into two classes. 
The one is particle detection, where the effect of a single incoming particle 
is observed and possibly recorded in time, and the other is the total damage 
due to many particles, as in reactor materials.

All damage effects depend on a competition between the cross sections 
for a multitude of different processes. Theoretical studies have been made 
by many authors concerning some aspects of excitation and ejection of 
electrons. Other theoretical studies have been concerned with the average 
energy required to form defects in solids. Less attention has been paid to 
the question of the competition between, on the one hand, energy transfer 
to atomic electrons and, on the other hand, energy transfer to translatory 
motion of an atom as a whole. Our knowledge of collision processes for 
slow heavy particles has been scanty, and the mentioned competition does 
in fact occur primarily for slow heavy particles.

To a wide extent all above damage processes may be described by 
integral equations which are formally equivalent. The differences concern 
mostly the inhomogeneous parts or boundary conditions. But the competi
tion between energy transfer to electrons and to atomic recoils can be de
scribed by equations which have even more in common. This is because 
there are extensive similarity properties, of Thomas-Fermi type, between 
the competing processes in this case. The homogeneous integral equations 
in different substances are actually quite closely connected. It can therefore 
be worthwhile to study them in some detail. When we have gained insight 
in the equations we can handle not only average damage effects, but also 
fluctuations and even the distribution in probability.

1*
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We shall he concerned mainly with one effect which corresponds to the 
simplest homogeneous equations. This effect is the division of the dissipated 
energy between electrons and recoiling atoms in the substance. More pre
cisely, for an incoming particle of energy E we ask for that part 7/ of the 
total energy loss, E, which is ultimately given to electrons, and that part v, 
which is ultimately left in atomic motion. Since this division is a useful 
and simple concept, we comment on it in some detail as an example of the 
application of the general equations.

It might seem as if the division into 7; and v were not quite well-defined, 
since we are not concerned with the final thermal equilibrium. However, 
on the one hand, the energy once given to electrons can be transferred 
back to atomic motion only extremely slowly and in exceedingly small 
bits. 5’ On the other hand, sufficiently slow atoms no longer excite electrons 
and their energy may be frozen in or become thermalized. This may give 
a qualitative justification of the separation into v and 7/.

For the present purpose the quantities 7; and v may be specified as fol
lows. We consider 77 as the sum total of the energy given to electrons, i. e. 
for ejected electrons it is the kinetic energy plus the original binding while 
for excited electrons it is the excitation energy. Correspondingly, v is the 
total energy given to atoms, excluding internal excitation of atoms. Thus, 7/ 
and v are quite well-defined, and have the sum rj + v = E .**  It is clear that 
there must be a probability distribution P(y, E}dv in the variable v, such 
that éoo #oo

\ P(y, E)dv = 1 , v(£) = \vP(v,E)dv,
• 0 ^0

and similarly for the higher moments. For the present we may disregard 
fluctuations and consider only e.g. v = v(E).

We shall attempt to show how Tj(E), v(E) and other cumulative effects 
may be derived for all kinds of particles in any medium. Since vj and v 
are determined by the competition between energy transfer to electrons and 
to atomic recoils in all collisions during slowing-down, they are expected 
to depend on the medium, on the type of particle and on its energy. This 
enormous variability can be reduced somewhat by studying at first the more 
basic cases.

* An exception occurs if an electron by exciting atomic electrons gives rise to large vibra
tions or even disruption of bindings in molecules (through a Franck-Condon effect or an Auger 
effect). The energy transferred in this way from a moving electron into atomic motion can be 
appreciable. This effect must be studied separately, and is remarkable in that it does not occur 
in monatomic gases. - The role of the Auger effect is studied by Durup and Platzman (1961).

♦*  If more subtle distinctions are necessary, we may divide E into components other than 
T] and v. Examples are the energy escaping as X-rays or as near-thermal excitations.
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Let us start by considering the case where the medium consists of only 
one atomic species, of atomic number Z2 and mass number A2. Now, any 
incoming particle, irrespective of its type, gives rise to recoiling atoms of the 
medium, and we will have to make use of their value of v and rj. It follows 
that the simplest basic case occurs when the atomic number, Zi, and the 
mass number, Aj, of the incoming particle are equal to those of the medium, 
i. e. Zj = Z2, Aj = A2.

Suppose that a particle belonging to the medium (Zt = Z2) initially has 
an energy E; we want to find vj(E). Collisions with atoms result in recoiling 
atoms or ions which may have any energy E' within the interval Q < E' < E, 
and therefore the corresponding values of rj{E'} enter in the evaluation of 
îj(E}, as must also the differential cross section for energy transfer to re
coiling atoms. Clearly, the procedure must be to build up starting from 
zero energy, and the relative magnitude of the partial stopping cross sections 
Se(E) and Sn(E) must be of direct importance. We shall therefore review 
briefly the behaviour of the relevant cross sections.

When deliberating the approach to these problems, one should first of 
all bear in mind that extreme accuracy and separate computation of each 
individual case cannot be the primary aim. Also, a discussion of quite low 
energies of heavy particles, less than 100 eV say, is either unnecessary or 
may be made separately. It is therefore desirable to use statistical methods, 
of type of the Thomas-Fermi treatment, as far as possible. Since at moderate 
energies the interpenetration of two atomic electron clouds can be consider
able, many atomic electrons with moderate bindings play a part, and sta
tistical methods seem promising. In the case Zt = Z2, Ax = A2 the function 
rj can depend on three variables, rj = Tj(Z2, A2, E1). It turns out that the 
Thomas-Fermi treatment together with a suitable approximation to scattering 
reduces the number of variables. In fact, beside the energy measured in a 
suitable Thomas-Fermi scale there is only one further parameter, which 
even has approximately the same value in most cases. Such reductions in 
the number of variables lead to highly desirable simplifications in the theo
retical treatment.

We shall already here give a brief summary of relevant stopping cross sections 
and differential cross sections. The cross sections are derived elsewhere (Lindhard 
and Scharff (1961), and Notes on Atomic Collisions I and IV (unpublished)). We 
do not claim that the accuracy is very high, and in individual cases other authors 
may have obtained better estimates. The primary purpose for the present is to have 
available comprehensive formulas, applicable in as many cases as possible. Maybe 
the greatest uncertainty is the proportionality factor, k, in the electronic stopping. 
A considerable number of observations on range and on scattering have been made; 



6 Nr. 10

they appear to be in fair agreement with the formulas quoted here (Lindhard, 
Scharff and Schiøtt (1962)).

Stopping cross sections.
The nuclear stopping cross section Sn = \Tnd<jn depends on the particle energy 

E, and on the parameters Z1, Z2, Ax and A2. An important region of low velocities 
corresponds to v less than ~ 0.015 c0Z2/3, where Z2/3 = Z2^3 + Z2/3 and v0 = e2//?. 
In this region Sn remains nearly constant, and we shall sometimes approximate Sn 
by the constant standard stopping cross section S„ (similar to that quoted by Bohr 
(1948)),

S°n = (?r2/2.7183)e2a0ZiZ2Mi-Z~W (Mr + M2)~1 . (1.1)

In a more accurate description Sn increases slowly towards a maximum (cf. Fig.l), 
and (1.1) may be used in the neighbourhood of the maximum. Beyond it, Sn decreases 
corresponding to an increasing negative power of E, but always slower than E_1. 
In fact, Sn approaches the classical stopping formula in a screened Coulomb po
tential.

It turns out that the nuclear stopping is most simply described by a suitable 
scaling of energy and cross section. Introduce the dimensionless quantities

a M2
E Z^eZ^+Mz) and Q = RNMzAna?

M1

as measures of energy and range, where a = 0.8853u0 Z“1/3, while R is the usual 
range and N the number of atoms per unit volume. The derivative (de/do) = 
S (Afi +M2)/(4 7ie2aZiZ2Afi) is a dimensionless measure of the stopping cross sec
tion, S. To a good approximation all nuclear stopping cross sections are then 
described by one curve. This is shown in Fig. 1, where the solid curve was computed 
from the comprehensive scattering cross section in Fig. 2. The approximation Sn = 
S°n is represented by the horizontal dotted line (deldg)n = 0.327.

The electronic stopping cross section is nearly proportional to v in a consider
able velocity interval, i.e. for p<fi = Ro- Zi2/3, and is of order of

8 7re2u0 z
V V < Z?1 . (1-2)

This leads to an electronic contribution to stopping in an e-plot (de I dg) = Zc-e1/2, 
where the quantity k as given by (1.2) depends somewhat on Zi, Z2, and M2, 
but is often within the interval 0.10 < k < 0.20. This holds in particular in the case 
of Zi = Z2, Ai = A2, where k = 0.133 Z2/3 A”1/2, so that k varies only little with 
Z2. Merely in the special case of Z2 »Zi, with Zi comparable to 1, does k appreciably 
exceed 0.20. The dashed straight line in Fig. 1 shows the electronic stopping for a 
representative value of k (k = 0.15). It cuts the horizontal line Sn = at an energy 
Ec corresponding to ec = 4.75.

In the neighbourhood of v = iq the electronic stopping has a maximum, upon 
which it decreases and gradually approaches the Bethe stopping formula.

Let us take the ratio = SJSn as a measure of the division of energy 
dissipation into electronic and atomic motion. The above summary of
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Fig. 1. Theoretical stopping cross sections in q—e variables. The abscissa is e1/2, i.e. proportional 
to v. The solid curve is (de/dQ)n computed from the Thomas-Fermi cross section in Fig. 2. The 
horizontal dashed line indicates (1.1) and the dot-and-dash line is the electronic stopping cross 

section, ke1'2, for k = 0.15.

/

—/

_______________

stopping cross sections then shows that there is a natural division into three 
regions of different behaviour. In the lowest energy region, region I, the 
nuclear stopping is dominating and relatively little energy goes into elec
tronic motion. Region I is bounded upwards by an energy roughly equal 
to Ec. Above Ec the nuclear stopping falls off, while the electronic stopping 
goes on increasing as E112. This is region II, with an upper bound given 
by vt, i.e. is of order of 103 or larger. In region II the ratio £ increases 
rapidly, and the fraction of energy going into electronic motion must increase 
correspondingly. Finally, above q the electronic stopping starts decreasing, 
and the ratio £, though still increasing, approaches a maximum value of 
order of 2Mp/m ~ 4000; this is region III. The division into three regions 
is convenient only when Zx = Z2.

Differential cross sections.
Although the stopping cross sections are relevant and give a qualitative picture 

of the events, they contain only part of the necessary information. In fact, in the 
following the integral equations demand a detailed knowledge of the differential 
scattering cross section in nuclear collisions. As regards electronic collisions, we nor
mally need no more than the stopping cross section itself.

We shall briefly recapitulate two different approximations to the differential 
cross section in nuclear collisions, assuming the scattering to be approximately
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elastic (Lindhard and Scharff (1961), and Notes on Atomic Collisions, I). First, 
in an s'th power potential, V (r) = Zi Z2e2u®_1s^1r_s, with as & a = 0.8853 a0 ■ 
Z-1/3, the differential scattering cross section is approximately equal to

rf On
Cn JT

'J'l—l/s J’l + 1/s ’ .s > 1 , (1.3)

where the incoming particle with energy E transfers an energy T to an atom orig
inally at rest. Here, T < 7’m = yE = 4 Mi M2 (Mi + M2)~2E, Tm being the maximum 
energy transfer in the collision. Furthermore, the constant Cn is connected to the 
stopping cross section Sn, and is approximately given by

C n
2ZiZ2e2

Mov2 ’

Mo being the reduced mass. In preliminary discussions these simple formulas are 
quite useful, especially for explorative purposes. The case of s = 2, where Sn = 
is independent of energy, appears to be a fair approximation at energies somewhat 
below Ec. At extremely low energies, s = 3 is preferable. At high energies s tends 
to 1.

A more accurate description is obtained from an interaction potential V (r) = 
(ZiZze2/r) • (f>0(r/a), where tp0(jc) is the Fermi function belonging to a single Thomas- 
Fermi atom. It turns out that the differential cross section is now to a good approxi
mation, for all Zi, Za, Ai, Å2 and all non-relativistic energies, equal to

do = na2~f(t^), (1.4)

d
where I = E2(TITm) = t‘2-sin2-. The variable / is proportional to the energy transfer

7’, and to the energy E through e2ITm. Thus, one universal function of a single vari
able, f (tl/2), describes the scattering at all energies and scattering angles, and for 
all atom-ion pairs. The function f was computed numerically from the Fermi func
tion, and is shown in Fig. 2. At high energies and not too small angles the expression 
(1.4) becomes equal to the Rutherford cross section, where / (,r) = (l/2.r). The equa
tions (1.3) and (1.4) are used in the following in order to get first estimates of radia
tion effects.

Some reservations should be made in connection with the cross section (1.4) 
and the accompanying curve on Fig. 2. First, at high energies e>ei, the curve on 
Fig. 2 is not very accurate at small angles, because the screening of the potential is 
reduced, the ion being stripped of most of its electrons. However, since at these 
energies most of the scattering is Rutherford scattering anyway, no major error is 
committed.

Second, a more interesting correction is due to the circumstance that for large 
angle ion-atom scattering a considerable energy is spent in electron excitation or 
ejection. This was observed by Fedorenko and also by Everhart and co-workers 
(cf. Fedorenko (1959)). The result is that such collisions are not elastic, and that 
there is a correlation between nuclear collisions and electron excitation. Although ap-
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Fig. 2. Universal differential scattering cross section for elastic collisions, (1.4), based on a 
Thomas-Fermi type potential. At high values of f1/2 it joins smoothly the Rutherford scattering.

The cross section corresponding to power law scattering (1.3) with s = 2 is also shown.

proximate formulas may be quoted for the cross sections of such quasi-elastic col
lisions, the gain in generality hardly outweighs the complications due to the extra 
parameters in the treatment. Since the changes in our final results arc presumably 
small (cf. p. 15), it seems preferable to verify at first the gross features of the simple 
formulas quoted above.

The general considerations in this introduction suggest a definite line of 
approach. It seems natural to develop first a formal theory of average dam
age effects, and to consider basic cases (Z1 = Z2) and possible simplifica
tions, keeping in mind the main characteristics of the above cross sections. 
In this connection, the theory of fluctuations and of probability distributions 
should also be given. We therefore treat these general topics in § 2 and § 3. 
A direct application of the above cross sections to basic cases may then be 
made, first by analytical methods (§ 4) and next by numerical computations 
(§ 5). As an illustration of more complicated cases we consider a few 
examples, which also have bearing on experimental results (§ 6).
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§ 2. The Basic Integral Equation

We shall now formulate and discuss the basic integral equation. The 
discussion, admittedly, is elaborate, but it seems profitable to make clear 
the contents of each assumption or approximation. We consider at first 
damage effects which are additive when due to independent events, so that 
e.g. saturation effects are excluded. The basic equation will be formulated 
in rather general terms, but immediate simplifications must be made when 
we treat solutions of actual cases. We study primarily the case where the 
particle belongs to the medium, and where the medium contains only one 
atomic species. When this case is solved, we may turn to equations for 
more complicated situations. For the present, we consider the simple case 
of average damage effects. Other averages, and the probability distribution 
in damage, will be discussed below.

We are concerned with a particle belonging to the medium, i.e. Z\ = 
Z2 (and A1 = A2). The particle has the energy E. We consider some un
specified physical quantity, <p, such as the number of ion pairs in a gas, 
the number of vacancies in a crystal, the energy given to electrons, etc. 
The quantity is arbitrarily taken to be zero before irradiation. The final 
average value of (f>, after irradiation by a particle of energy E, we call <p(E). 
Although we use this simplified notation, the quantity depends not only 
on E, but also on Z2 (and A2), and to some extent on the physical state of 
the medium. Further, the physical quantity may be changed later by re
combination processes, like in the case of ion pairs, but we shall disregard 
recombination effects and consider only the intermediate stage before re
combination. In practice, recombination may be either avoided or accounted 
for separately. It is important that the physical quantity ?>(E) in question 
is additive, i.e. for each separate slowing-down process all particles set in 
motion contribute additively to <p. This could hold for the three examples 
mentioned above.

The quantity ç?(E) for the particle with energy E we may express in 
another way, if we suppose that the particle moves a path length dR in the 
medium with N atoms per unit volume. There is then a probability NdRdon e 
for a collision specified by energy transfer Tn to the mass centre of the struck 
atom, together with energy transfer 7’ei to electrons (electrons labelled by 
suffix i). The collision reduces the ion energy to the value E-7n-) 7rt,

- - i i.e. the ion will now have a 92-value equal to <p(E- Tn-^Tei). At the same 
i

time the struck atom gets the 99-value <p(Tre-t/), where U is the energy 
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wasted in disrupting the atomic binding. Finally, the electrons produced are 
described by another ^-function, which we denote as (pe, and their contri
bution to y after the collision in question is then ]>/pe (Tei - Ut), where

i 
are the corresponding ionization energies. The above probability times the 
total çkvalue after the collision gives the contribution of this collision to 
^(E). Afterwards we integrate over all collisions. There is left a probability 
1 - NdR \d(Jn e that no collisions occur; in this event the çi-value remains 
^(E).

Collecting the above contributions we may write the original ç>(E) as

ÿ(B) = JVdR-2;Tri) + ÿ - U) + - '’i >} +

+ (1 - NdR^dan^ÿ(E),

which leads to the basic integral equation

+ - 0 (2J)

This equation may be said to state simply that the çkvalue of the particle 
before the collision is equal to the sum of the ip-values of, respectively, the 
particle, the struck atom and the ejected electrons after the collision, aver
aged over the probability of occurrence of the individual processes.

It may be noted that there is no necessity for the total cross section 
\ don e to be finite, and thus we do not attempt to normalize the probability 
of the various events. The actual physical quantities entering are integrals 
of don e times quantities tending to zero as e.g. Tn, or faster. The cross 
sections quoted in § 1 do in fact diverge. Of course, if classical cross sections 
larger than the atomic size become important in the final results, it may not 
be possible to separate into collisions with single atoms.

In equation (2.1) we have tried to avoid unnecessary details of notation. 
Thus, in specifying <p for the incoming particle or for the struck atom we 
might include a dependence on the degree of ionization of the particle in 
question. We shall assume such specifications to be included if necessary, 
but the interpretation of <p(E), if there can be doubt about the state of 
ionization, would normally be that in q> the number of electrons carried by 
the ion is considered to be a function of the ion velocity, and equal to the 
average number of electrons on the ion at the velocity in question.

The solution q> (E) of the equation (2.1) can be found if ye is a known 
function. This is the case if represents e.g. the number of vacancies pro
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diiced in a crystal, since electrons with moderate energies may not be able 
to produce vacancies because of their low momentum, and thus <pe = 0. 
However, in general there is an additional integral equation describing q>e. 
For an electron of energy E the differential cross section is denoted by 
dan e and the collision results in a recoil atom of energy Tn and an energy 
transfer Tei to atomic electrons. In analogy to (2.1) we immediately find

JE7^) 7’n Z7) Tel “ 0 • (‘^)

Together with (2.1) the equation (2.2) leads to a solution for both and 
(f>e. In equation (2.2) we may normally quite neglect the recoil of the 
nucleus; (2.2) then contains only and can be solved separately. An in
coming electron usually gives only a small perturbation of the struck atom, 
and electron excitation may be separated into individual excitations. With 
a differential cross section dae we thus find in all the simplified version 
of (2.2)

JE \(la'e 7’eï)-^(F)+ÿe(7’«- ^i)} = (2.2')
i

Equation (2.1), supplemented by (2.2) if necessary, describes the simplest situa
tion. It may be useful to comment on the set of integral equations belonging to other 
and more complicated cases. We give only a summary treatment, since the generali
zations to be made are fairly obvious.

Firstly, if Zi Z> we denote by yi(E) the average physical effect produced by 
particle 1. The equation for ÿi(E') is obtained in the same way as (2.1)

Tn- u)+JppeCTei- Ut)} = 0, (2.3)

where c/crie is the differential cross section for collisions between particle 1 and 
the atom 2. Evidently, (2.3) requires that the solution of (2.1) is known. In this 
sense, equation (2.3) is secondary to (2.1); this applies also when we wish to com
pare experiments and basic collision theory. It is interesting to notice that (2.3), 
in contrast to (2.1), is not a typical integral equation; if Tn + Tei is small, (2.3) 
becomes a differential equation. i

Secondly, the substance may contain more than one atomic element. Then, 
primary cases are those where the incoming particle is one of the atoms in the 
substance, and the function ÿO')(E) belongs to the case where the incoming particle 
is equal to the /'th atomic species of the substance. In place of (2.1) and (2.2) we now 
write generally

m + 1 f*
\dzSjfc;(E',x)^d)(x) = 0, /c = 1, 2, . . . , 1, (2.4)

;=i J

where m is the number of atomic elements in the substance, and ^d) .... ^(w) are 
the ^-functions of these elements, while 7p(-m+1'> (E) represents <pe(E). The integral 
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operator S*;  is associated with collisions between the /c'th element, of energy E, 
and the /'th element at rest. As an example, we quote the basic case (2.1) and (2.2), 
where m + 1 =2, and e.g. S'21 = $ da'n e ô (x — Tn+ U), according to (2.2).

Let us now return to the basic integral equation (2.1) and discuss the 
approximations which might be made in solving the equation. It is useful 
to classify these approximations; roughly, they may be divided into five 
types.

Discussion of approximations.
The first approximation, (A), was introduced above. It consists in as

suming that the electrons do not produce recoil atoms with appreciable 
energies. This is usually quite correct and implies that q>e may be obtained 
separately, i.e. (2.2) simplifies into (2.2'). (A) is therefore normally fulfilled. 
An interesting exception occurs if the disruption of atomic bindings has 
significant influence on the measured effects (cf. footnote on page 4). A more 
straightforward exception is the case of incoming electrons of energies so 
high (> 1 MeV) that in violent collisions bound atoms can be directly dis
lodged. In the following, approximation (A) is always used.

The second approximation, (B), consists in neglecting the atomic binding 
term U in (2.1) so that ÿ (Tn- U) is replaced by (Tn). Since the bindings 
are of order of some eV, we are normally quite justified in neglecting U, 
for heavy particles at energies where the electronic stopping has any in
fluence at all on the events. Approximation (B) is used everywhere in the 
following, if not directly otherwise stated.

At this stage it may be of interest to mention cases where (B) is invalid. In 
fact, if the binding energies contribute to (2.1) in a significant way, the particle 
energy E is not exceedingly large compared to the binding term U. This implies, 
on the other hand, that the electronic stopping is small and may be neglected. The 
approximation may be called (B_1), and we then obtain the simplified equation

$ d^«{ÿ(B - Tn) -ÿ(E) +ÿ(Tn- U)} = 0, (2.5)

where dan is the differential cross section for elastic ion-atom collisions. This equa
tion is essentially that used by Snyder and Neufeld (1955), and by other authors. 
It should be noted that the binding term U is introduced in a rather symbolic way. 
A thorough study demands a detailed description of the mechanism by which an 
atom in a lattice may be removed from its environment. Thus, beside the energy 
wasted irreversibly, U, when an atom is quickly removed, there is e.g. the threshold 
energy for adiabatic removal of the atom. The generalization of (2.5) to a substance 
containing several different atoms in various binding states should be obvious from 
(2.4). Note also that the approximation (E), introduced below, may be useful in 
studies of (2.5).
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The third approximation, (C), is to assume that the energy transfers 
Tei to electrons are small in a relative measure, or Tei« E- Tn. Like (B) 
this approximation should hold quite well if the particle energy is not too 
low. In fact, we have approximately at high velocities Tei~ E times electron 
mass divided by ion mass. In all, (C) applied to (2.1) leads to

i >

(2-6)

where approximation (B) is also included. Like the two previous approxi
mations, approximation (C) is used generally in the following, exceptions 
being clearly stated.

The fourth approximation, (B), is separation of nuclear and electronic 
collisions. The idea is that only a negligible part of the electronic excitation 
occurs at the small impact parameters where nuclear collisions play a role. 
In point of fact, most of the electronic excitations are associated with large 
impact parameters. It is then natural to disregard the slight overlap of the 
two types of collision effects, and (2.6) becomes

^'(E).Se(B) = ^doJ^pCE-Tn)-cp(E) + (p(Tn)^+ ^dae^(pe(Tei-Ui), (2.7) 

where dan is the differential cross section for elastic nuclear collisions. 
Se(E) = [doe^Tei is the electronic stopping cross section, dae being the 

i
differential cross section for energy transfers Tel, Te2, .... Tei, .... to 
the individual electrons.

Approximation (B), as expressed by (2.7), is also used widely in the 
following. It contains a definite assumption, the justification of which is less 
apparent and less justified than the previous assumptions. In (2.7) we have 
disregarded the connection between electronic and nuclear collisions; they 
are even supposed to be separable. From a series development in (2.6) we 
find that the term neglected on the right hand side of (2.7) is approximately 

it is of interest to investigate the justification of 
i

(2.7) using such correction terms.
In making approximation (B) we include approximation (C). This is 

reasonable since it implies only that ÿ (£) - ÿ ( £ - = ÿ'(£)X 7^- The
\ i ' I
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ETel 
i 

left hand side of (2.7), but is presumably not large.
Finally, the fifth approximation, (E), is to assume that also Tn is small 

compared to the energy E. Since the maximum energy transfer is normally 
quite large, and even equal to E if Ax = A2, it might seem that this approx
imation is poor. However, because the cross sections are strongly forward 
peaked, the approximation remains fairly good, as we shall see in § 4. Ap
proximation (E), together with the previous simplifications, leads to

on thecorrection for this approximation is therefore \<p" (E)^don e

V'(E){Se(E) + S„(E)} - ^da^T^ + ^da.Z^T^-U,-), (2.8) 

where Sn(E) = J danTn, and where the quantity neglected, as compared 
to (2.7), is approximately (1/2) <?"(E) • J donT^ on the right hand side of
(2.8).  The approximation (E) may be regarded as an expedient to get an 
approximate solution of (E), i.e. (2.7).

An interesting consequence of approximation (E) may be noticed. Thus, 
if we disregard (E), and use only (E), i.e. Tn and Tei are small, we obtain 

i
again equ. (2.8), but now Sn = J d(Jn e Tn, Se = \ dan e£ T*.  Further, the 

i
cross sections on the right of (2.8) should be dan e. The separation in (2.8) 
is therefore obtained independently of the separability of nuclear and elec
tronic collisions assumed in (E). Conversely, it can be difficult to relate 
the integral equations for to the degree of correlation between electronic 
and nuclear collisions, as referred to in § 1, p. 9. In Fig. 6, the good agree
ment between approximations (E) and (E) indicates that correlation cor
rections to r(E) can not be large.

We shall sometimes use an approximation, (E'), which is much closer 
to (E) than (E) itself

~ j ?"(£)rn(E) + ÿ-(£){S„(E) + Sn(E)}- 
(2.8')

where E„(E) = J danT*.
When (pe is determined by an equation like (2.2') it only enters as a 

known source term in the basic integral equation (2.1). Clearly, the primary 
problem is then to find the complete solution of the homogeneous basic 
equation, i.e. omitting the <pe-term, in one of its formulations within the 
approximations (A) to (E).
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It would be vain to ask for a detailed knowledge of done, let alone 
solve the equation (2.1) on this basis. However, from equations (2.7) and
(2.8) it is seen that knowledge of the stopping cross sections Se and Sn as 
functions of energy is essential to the solution of the basic integral equation. 
Apart from this, some knowledge of dan as a function of Tn is clearly re
quired. This is seen in all versions of the basic integral equation, where the 
term ^d<rrø^(7’n) always enters.

It need hardly be added that in the following we introduce approxima
tions other than those listed above. Most of the approximations are con
nected with Thomas-Fermi-like properties or with the specific behaviour of 
the cross sections summarized in § 1. An example of general interest is the 
attempt to formulate asymptotic equations in the high energy limit, cf. (5.3) 
and (5.4).

§ 3. Fluctuations and Probability Distribution

Fluctuations.
So far, we have considered the average, tp(E), of an additive physical 

quantity, çp. However, it is of interest to discuss also other averages, for 
instance the average of the square of the physical quantity. In general, we 
might consider <<^(£) >, by which is meant the average over all events 
of the ni’th power of (p, so that < ^(E) >=<p(E). The equation governing 
<99m(E) > is obtained in a similar way as (2.1), and we find in analogy 
to (2.1)

In principle, (3.1) may be used to construct the average of any function 
f ((p), e.g. by means of a power series development in <p. In practice, how
ever, it is preferable to study instead the equation for the probability dis
tribution in (p, P((p, E). A brief discussion of the probability distribution is 
given below.

How ever this may be, it is always of considerable interest to treat the 
case of zu = 2 in (3.1). This case indicates how equations of type of (3.1) 
may be solved, and gives at the same time the average square fluctuation in <p. 
We therefore put m = 2 in (3.1) and average over independent quantities 
like e.g. the product < <p(E - Tn-Y rrei)(p(TJ > = q>(E - Tn-, 

i i 
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where we average over the subsequent fate of two atoms of given energies, 
E—Tei and Tn- We 8et thus

i

- ' » “2 - ß|(£) + -4< 7’»> + 2 ß2ve( Ta - to} -
<• , r / ‘ > ‘12 ! } <32>

- yan,e^E-Tn-zî’«)+ÿ(r„)+2%(î;<--?2(£) •

Mat.Fys.Medd.Dan.Vid.Selsk. 33, no. 10.

where we have introduced the average square straggling f?2(E) = < ^(E) > 
-^2(E), and £|e(E) = -ÿ2e(E).

The right hand side of (3.2) may be reformulated by means of (2.1), 
and we obtain

jjd<rw J£*  (E) - £|(Ttt) -Q*( e- Tn-X Te^ -X(Tei -U^ - 

-^ante^E-Tn-XT^-^(E) ^ÿ(Tn) + XVeCrei~ ^<)| •
(3.3)

This is the integral equation which governs the straggling in <p, and it 
corresponds to the equation (2.1) describing Tp itself. Also in a more for
mal respect (3.3) is similar to (2.1). In fact, if the right hand side of (3.3) 
could be neglected, the resulting equation for the quantity would be 
exactly (2.1). Now, the right hand side of (3.3) is a positive source term 
completely determined by the known functions and ç?e. It contains the 
square of a term whose average is zero, being the square of the change 
in in a collision, averaged over the different results of the first collision.

We shall not quote the separate equation for X22e(E), in analogy to
(2.2) or (2.2'), since it would be of type of (3.3) and could be written 
down immediately. Moreover, simplifications in (3.3), corresponding to the 
approximations (A) to (E), are fairly straightforward. We consider explicitly 
only a few cases. Suppose that energy transfers to electrons are small, and 
that nuclear and electronic collisions are separable. This corresponds to 
approximation (D). In the cases where cpe is zero we then get, in analogy to 
(2-7),

«.(£)------ Tn) - &f(E) + SfyTn) } +

+ Jd<,„{?(E-7’n)-ÿ(Ê) + ^(r„)}2.
(3.4)

where also the term (9?'(E))2 Teij is disregarded.

2
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Assume here that Tn in (3.4) is small, i.e. approximation (E). From
(3.4) we obtain, corresponding to the homogeneous part of (2.8),

\Sn+Se}^^E') = + (Tn) - T„(p'(E)}2.
(3-5)

Although (3.5) appears to be simpler than (3.4), we shall lind in § 5 that 
in a straightforward case equ. (3.4) has the advantage of simplicity.

Let us consider for a moment what kind of changes will result in (3.5), 
if approximation (71) is dropped and only (E) and (C) are kept. Then, Tn 
and ^5 7^- are small, but a correlation between electronic and nuclear colli-

i
sions remains. According to (3.3), all cross sections in (3.5) must be replaced 
by moreover the term (<p(Tw) - 7,w<p'(E'))2 on the right changes
into ^(7’w) --^'(E)p7; + 7’eijj > an<I f°r this reason the effect of correla

tions can be distinguished. In this respect (3.5) dillers from the corresponding 
equation (2.8), when*  we also discussed omission of approximation (/)).

Corresponding to the equation (2.3) for çq(E), we shall also discuss the 
straggling in the case of Z1 Z2. The average square straggling in ç?1 is 
denoted as ß®i(E). We consider again the case where cpe does not con
tribute. Using approximation (/)) an equation analogous to (3.4) is obtained

(^) = j(£ - Tn) - (E) + ßj( 7’J) +

\(i<hn\Vi(E-7’w)-^1(E) + ^(7,n)J2, (3-6)

where 92(E) is given by (2.7), 722(E) by (3.4) and p>i(E) by (2.3) in ap
proximation (77), while dcrln is the differential nuclear cross section for col
lisions between the particle 1 and an atom 2. Further, Sle is the electronic 
stopping cross section per atom for the particle 1 passing atoms 2. It is
seen that (3.6) contains (3.4) as a special case. In (3.6), terms of type of 

Tn^ are omitted.

Finally, we apply the approximation (E) to (3.6), i.e.

(^ie + 5m)^ß|>i(ß) = Tn<Pi(E)}2, (3.7) 

where q>, and çq should be given in approximation (E) too. Note that
(3.7) is a differential equation in the variable /22 x, and may be integrated 
readily.
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(3.8)

(3.9)

O

where do'e is the differential cross section for transfer of energy Tei to atomic elec
trons by an electron of energy E. There are further simplifications, if we take into 
account that an electron normally ejects at most one atomic electron in a collision.

2*

The equation states that the probability for the value <p prior to the collision is equal 
to the product of the individual probabilities belonging to ejected particles, when 
averaged over the frequency of occurrence of the different events. There is an inte
gration over all possible ç?-values of the ejected particles, with the condition that 
their sum is equal to the original y-value, as expressed by the <5-function. Thus,
(3.8) assumes independent behaviour of the separate events, i.e. product of P's, 
and additivity of damage effect, i.e. <p = <p' + <p" +

i
Equ. (3.8) determines P(<p,E) and is considered as a known function. If

(3.8) is multiplied by q> and integrated over tp from 0 to oo, equ. (2.1) results.
There is a similar equation for Pe(cp,E). We write it down assuming for sim

plicity that electrons produce no atomic recoils (approximation (A) and equ. (2.2'))

Probability distribution.
We have now studied average quantities, q> (E), described by rather simple 

equations, as well as fluctuations, f22(E), which obey more elaborate equations. These 
are the first two steps in a series development, where successive moments < <pn > 
are calculated. The series development is convenient if the first moments give ade
quate information, since they may be calculated with comparative ease. Often, 
further information is needed. When the value of a series development becomes 
doubtful, a closed equation for the probability distribution itself is much to be pre
ferred. Other approximation methods are then at our disposal.

It is thus of both theoretical and practical interest to study the probability dis
tribution itself. We shall merely formulate the basic equations. Let us then ask for 
the equation analogous to (2.1), where one considers the effect of an incoming 
particle with energy E, and identical with the atoms in the medium. Introduce 
probability distributions P(<p,E) and Pe{tp,E) representing the probabilities that, 
respectively, the particle and an electron having energy E will produce the damage 

effect <p. Therefore, e.g. \ (pPe (yp,E)d<p = 7pe (E) is the average effect produced by
• o

an electron of energy E. The equation governing P(<p,E) is derived in the same 
way as (2.1), making the same assumptions. We find readily

\dan>eP (<P,E) = \dantAd(p'\d(p"d<pjPe (jpj, Tej - Uj) •
• • *0  *0 J ~O

■ P l<p', E - Tn - 2? Tei\ ■ P (<p”, Tn -
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In (3.8) let us assume that electrons do not contribute to the damage effect in 
question, i.e. Pe((p,E) = à (<p). In approximation (I)) we then get, since P(^,0) = 
à (<p),

(3.10)

The bond expressed by the ô-function can be inconvenient. It is natural to in
troduce Laplace transforms of the probability distribution,

P(Å,E) = \d<pP(<p,E)e~Å<P.
•’o

The Laplace transforms are particularly useful because of the additivity of (p. 
From (3.8) we obtain the alternative version

dan>eP(l,E) ~ y^n,eP^,E - Tn-^Tei)P(l,Tn- U)-

‘ fj Pe(Å, 1 ej ~ U -j) ,
i

and if q>e is zero we have Pe (Â,x) = 1.

(3.11)

§ 4. Analytical Approximations in Homogeneous Equation

The first step towards a solution of (2.1), or its simplified versions, is to 
discuss its homogeneous part, i.e. put = 0. Now, it so happens that the 
quantity v(E'), introduced in § 1 and described as the average energy 
transfer to atomic motion, is normally a solution of the homogeneous part 
of equation (2.1), because the energy transfer from electrons to atoms is 
negligible to nearly all purposes. By solving the homogeneous equation, we 
have therefore found one important physical property in slowing-down 
processes. In the following, the normal boundary condition on r(E') is 
v(E)/E -> 1 for /<->(), and thus îÿ(E')/r(h?) vanishes in this limit.

It is necessary to gain some experience concerning solutions of the inte
gral equation. To this end we consider at first analytical solutions using 
simplified approximations to cross sections; this can be of interest partic
ularly at the lower energies. Secondly, in § 5 we solve the integral equa
tions numerically with more accurate cross sections, using electronic com
putations. We are then led to new asymptotic or approximate solutions, 
which may be checked by the numerical and analytical results. The present 



Nr. 10 21

chapter may therefore be regarded as an exercise preliminary to the more 
precise treatment in § 5.

The simplest results obtain when we suppose that the differential cross 
section don may be approximated by the power law scattering formula (1.3), 
corresponding to a potential proportional to r s. We can then arrive at ana
lytical solutions of the various approximations to the integral equation. 
Let us start from approximation (E), i.e. (2.8). The homogeneous equation
(2.8) for v becomes

(Se + S„)-r(£) (4.1)

where q> has been replaced by v. We introduce (1.3) in (4.1), and multiply 
by S»1 E1_1/s. Differentiating with respect lo E we get a differential equation 
of second order in place of the integral equation (4.1),

(£(E) + 1) E2v" + = o, (4.2)

where £(E) = Se(E) /Sn(E). It is apparent that a differential equation was 
obtained from the original integral equation only because of the simple 
behaviour of the cross section (1.3), where the dependence of dan on E 
could be separated out as a factor.

Corresponding to (1.2) we shall assume that Se<xE112, and since Sn^- 
E1-2/s We get £(E) E2/s~1/2. It then turns out that the solutions of (4.2) 
are hypergeometric functions, of the kind F (a, b; a + b; .r), cf. Erdélyi et 
al. (1953). The complete solution of (4.2) is seen to be 

s + 2
4-s

3s+ 2
4-s ;-«£)) +

1-s
+ c2es -f 2-2s 4-3s

4 —s ’ 4-s
6- 5s
4 —s -£(£)).

(4.3)

where CT and CT are arbitrary constants.
If we ask for the particular solution given by the normal boundary 

condition for v at E = 0, i.e. v(E)/E 1 for E ->0, we obtain CT = 1 , 
CT = 0, if s<4. Note that only for s<4 does the present £(E) tend to zero 
for E ->0, and that this is the proper behaviour of £(E).

If instead of (2.8) we start from the more correct equation (2.7), the cross section
(1.3) is seen to lead to the equation
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C* E
+ (i - J) \ fiVl/s • (?'<£ - n + *"(£)  2’} •

»-o

The integrand on the right is large only for T^E. Making an underestimate of the 
integral (because v" (E) is always negative and increases with E) we then replace 
y-l-i/s by jz-i-i/s jn the integral. This gives the differential equation

This equation differs only little from (4.2), but is an underestimate of v, as com
pared with the precise solution of (2.7) and (1.3). It is interesting that v from (4.2) 
is instead an overestimate of the solution of (2.7) and (1.3); this follows from v' (E) 
being a decreasing function of E. We have thus bracketed the solution of (2.7) 
between two approximate solutions. It turns out that (4.4) is generally a somewhat 
better approximation than (4.2). The solutions of (4.4) are seen to be hypergeometric 
functions, of the type

2s s + 2 (4 + s)a+2s —2 £(E)^
— s)’ (4 —s)’ (4 — s)a ’ a /

/ 2 —2s (2 — s)a +2 —2s (4 — 3s)a +2 —2s f(E)
^(4 — s) a ’ (4 —s)a ’ (4 — s)a ’ a

1 1
where a = - + —— is the coefficient of v" 

2 2 s in the brackets in (4.4). The present solutions

of (4.4) are similar to (4.3), and contain it as special case (a = 1).

Region I. In region I, where 0<£'~£'c, we may select a few suitable values 
of s, and study some of the approximate solutions. In doing this, we obtain 
not only a reasonable estimate of v(E), but also an insight in errors involved 
in some of the simplifications, (A) to (E), of the basic integral equation.

Let us consider the standard case, where s = 2 and Sn = S° is independ
ent of energy, cf. (1.1) and (1.3). We put ^(E) = (E / Ec)1/2, and obtain from 
(4.2) and (4.3), with the boundary condition v(E)/E =1 at E = 0,

V (E) - Ec{- 12 + 6 [1 +2 (Ec/E)112 ]■ log (1 + (E/Ec)1/2)} . (4.5)

representing the solution of (2.8)-i.e. approximation (E) - for power law 
scattering with s = 2. The solution (4.5) can be used only at energies where 
E)EC is somewhat less than unity. This limitation must be made because a 
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decrease sets in in the actual function Sn at an energy somewhat lower than 
Ec, in most cases.

Let us consider in particular the limit of (E/Ec) « 1, where a more gen
eral approach is possible. In fact, in any one of the approximations (D) to 
(E') we get, when s = 2, a power series in (E/E^12

rj(E) = E-v(E) = ^E^E-112-. .. , E«EC, (4.6)

where oq is a constant, the value of which depends on the approximation 
used. We compare four solutions of the case s = 2. Firstly, approximation 
(E) given by (4.5) leads to oq = 1. Secondly, a series development of the 
solutions of the approximation (4.4) leads to ax = 16/13 = 1.23. Thirdly, 
the more correct integral equation (2.7), i.e. approximation (/)), may be 
solved by a series development, leading to oq = 4/(3 %-6) = 1.17. These 
three values for oq give an indication of the accuracy of the various approxi
mations. As expected, (cf. the discussion of (4.4)) the solution (4.5) is an 
overestimate and (4.4) an underestimate of v(E); (4.4) is a somewhat better 
approximation. A fourth case may be mentioned, i.e. approximation (E') 
given by equation (2.8'). It consists in including the next term in the series 
development of v(E - Tn)-v(E), i.e. subtract (1/2) v"(E)\dcrn T2 on the left 
hand side of (4.1). We lind here oq = 8/7 = 1.14, so that approximation (E') 
is superior to (E).

Region II. In this region the function Se remains the same, increasing as 
E1/2. However, Sn begins to decrease and the scattering approaches the 
Rutherford scattering, though with a screening at a distance ~ a. For a 
qualitative orientation we again base our description on (1.3), so that we 
assume that Sn is proportional to a power of E, i.e. E1_2/s. This ap
proach is qualitatively less justified than in region I, but we can learn 
about the possible approximation methods for solving the basic integral 
equation.

Let us suppose that Sn is proportional to E~1/2 for E>E0, so that .s = 
4/3 in (1.3), and J(E) - (Se/S„) - (£/£„). Then, E„- (EOEC)™ is the energy 
at which the two stopping cross sections become equal. Equation (4.2) for 
v now becomes

(4 E3E^1 + 4E2)r" + (5E2Eft1 + E)v'-i7 = 0, (4.7)

with the complete solution (cf. (4.3))
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(4.8)

The solution is determined by the boundary conditions at the energy Eo, 
where we find v and v' from (4.5). Thus, is given by

C\ = ~.r“2+ ^(.r + 1)(.r 2).<3 log (1 +x) 1 - |x +. . . , (4.9)
5 a 5

where .r = EojEb is less than unity for all values of Zx = Z2. The expression 
for C2 is more involved, but C’2<0. This shows that although r(fi') increases 
with E, it remains below the value CT, and it increases only slowly towards 
this limit. In region III, however, it turns out that v will go on increasing 
without an upper limit, although still quite slowly. The behaviour of (4.5) 
in region I and (4.8) in region II is shown by the dashed curve in Fig.s 5 
and 6 for the case of ec = 4.75 (k = 0.15) and .r = 0.56, where it is com
pared with a numerical estimate based on the more accurate scattering 
formula (1.4). It may be noted that the value of C\ is not far from unity, 
and that C2 is small. If we were to put C\ = 1 and C2 = 0, we would instead 
have the solution where s = 4/3, i.e. (4.7), is used down to zero energy, 
and apparently this is satisfactory as a rough estimate.

In region I the solution (4.3) of the equation (4.2) was an application of approx
imation (E) using the cross section (1.3). It might therefore seem that also in region 
II the equations (4.7) and (4.8) are equivalent to approximation (E). However, we 
change from one cross section dan in region I to another in region II. Since (4.2) 
and (4.7) were obtained by differentiation of (4.1), they should be supplemented 
by inhomogeneous terms if the cross section changes at low values of TE. This 
circumstance is disregarded in (4.7), (4.8) and (4.9), giving some deviation from (E).

Straggling in region I. An evaluation of the straggling in v or g, Qy(E) = 
£}Z(E), from (3.3) is more involved than the estimate of v itself. Still, at low 
energies in region I, a series development may be made and the first term 
is readily obtained. If (1.3) is applied, it turns out that the relative straggling 
in g becomes a constant, independent of energy (and atomic number and 
mass) at low energies,

„ £«(£)2 =——----  = const., for £(E)<< 1 • (4.10)



Nr. 10 25

If we consider the standard case, s = 2 in (1.3) and £ = (FJ/EC)1/2, we 
find at low energies that 7/ is proportional to E3'2, cf. (4.6). We solve (3.5) 
and get o-2 = 1/14. We may also solve directly the more basic integral equation
(3.4) for £?2, which corresponds to equation (2.7) for rj itself. Then we ob
tain cr2 = (3 ti/4) - (23/10) = 0.0562, which is somewhat less than the pre
vious value of a2.

If, instead of the relative straggling, we consider the absolute straggling 
£} we find that (3.5) gives closely the same as (3.4), being only about 4 
percent less than (3.4). The approximation (E) is therefore considerably 
better for the straggling than for the value of the function 7/ itself.

Since f22 is expected to be more accurate than cr2, we quote the value of 
Ï22 obtained in approximation (E), i.e. (3.5), using (1.3)

(4.11)

which shows that the coefficient of (E-£(E))2 only varies from 0.071 to
0.109 when s increases from 2 to 3. The corresponding variation of o2 may 
be found from (4.3) and (4.11).

§ 5. Numerical and Asymptotic Solutions for Zt = Z2

Numerical results.
The analytical solutions in § 4 give merely some guidance in the problem, 

because they are based on the power law scattering, which has quite limited 
applicability. A fairly complete and reasonably accurate solution of the case

= Z2 may be obtained from representative values of the electronic stopp
ing constant, k, together with the universal cross section given by (1.4) and 
Fig. 2. It is convenient to use the e-t variables in (1.4). The electronic 
stopping is then assumed to be (dsjd(7)e = A -e1/2 in regions I and II. The 
homogeneous integral equation for r is

(S• j 2^5 • «'1Z6- J -’0) + ”(3}. (5.1)

where /(/1/2) is shown in Fig. 2. Note that (5.1) is equivalent to approxima
tion (£)).

The integral equation (5.1), with (deldQ)e = A-;12, was solved by numer
ical methods on the electronic computer DASK. Actually, a slight modifi
cation of (5.1) was advantageous in the numerical computations; if gives a 
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slight overestimate of ? as compared to (5.1), and should be accurate within 
a few percent. When starting the solutions at small values of e, the asymp
totic behaviour of the cross section (1.4) was assumed to be /(æ) x x1'3, cor
responding to power law scattering with s = 3. We could here use the ana-
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Fig. 3. The function ^(e) vs. e at low values of e, for Z, = Z2 and in the three cases k = 0.10, 0.15 
and 0.20. The curves were computed numerically from (5.1).

lytical estimates in § 4. In the following, solutions are presented for k = 
0.10, 0.15 and 0.20, which covers the range of variation of k for Z1 = Z2.

The results of the coded computations of r(e) from (5.1), i.e. approxi
mation (jD), are shown in Fig.s 3 and 4 for the above three values of k. 
Fig. 3 represents low values of the energy variable e. In this region it is 
preferable to give the function ï)(e) = e —v(e), because v(e) is nearly equal 
to £. Fig. 4 is a continuation of the curves up to e = 100. The function F(e)
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Fig. 4. The functions (c) vs. s for 0<e<100. The figure gives the continuation 

of the three solutions in Fig. 3.

increases initially as e, but remains small compared to e when e is large. 
In region II, i.e. when (de/dQ)e = k • e1I2,v(e) has an upper limit, as discussed 
below.

As a preliminary to the above calculations we made numerical calcu
lations by hand in approximation (E), i.e. based on the homogeneous part 
of (2.8). It seems of interest to compare the two approximations. This is 
done in Fig.s 5 and 6, in the case of k = 0.15. The full-drawn curve in 
Fig. 5 is the accurate solution of (5.1). The dashed line is the analytical 
solution (4.5) for power law scattering, with s = 2. At e = 4.75 this solution 
is continued by (4.8), corresponding to s = 4/3, cf. text in § 4. The accuracy 
of the power law solutions is seen to be moderate. Similarly, Fig. 6 shows 
r(e) for e<10(), in three approximations. The solid curve is the solution of 
(5.1). The analytical solution (4.8), for power law scattering with s = 4/3, 
is continued from Fig. 5, and shown by the dashed curve. This analytical 
solution is seen to become increasingly poor for large e. The stipled curve 
represents the abovementioned computation by hand in approximation (E).
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As expected, (E) is an overestimate of v, by about 10 percent for high values 
of e; this may be a tolerable accuracy for several purposes.

The average square fluctuation in v, /22(e), may be computed from 
i.e. approximation (D). In the coded computation we use £ - t vari-
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Comparison of approximations for Z, = Z2, k — 0.15 Curves show
of £. Thick solid curve is solution of (5.1), like Fig. 3. Dashed line is power law formula

(4.5), with s = 2. The curves approach the thin solid line rj =
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ables as in (5.1), and with / (/1/2) given by Fig. 2. The equation contains 
inhomogeneous terms which may be computed from v(e) in Fig.s 3 and 4. 
At e = 0 the solutions were started from the analytical approximations in 
§ 4, with ,s = 3. The results are shown in Fig. 7, for the three values of Å' 
used above, and relatively large values of £. The figure gives Q2fv2, the 
average square fluctuation divided by 72, and the resulting curves are seen 
to lie remarkably close to each other. It is instructive to compare various
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Fig. 6. Comparison of approximations for Zj = Z2, k = 0.15. Curves show v(e) vs. e for e< 100.
The solid curve is solution of (5.1). Dashed curve is (4.8) continued from Fig. 5, corresponding 

to power law s = 4/3. Stipled curve was computed by hand in approximation (E).
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Fig. 7. Relative average square fluctuation in v, Q2/v2, for k = 0.10, 0.15 and 0.20. Coded com
putations in approximation (£)).
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puted numerically in approximation (Z>), stipled curves in approximation (E).

approximations, as seen in Fig. 8 for k = 0.15. The solid curves represent 
approximation (7)), as in Fig. 7. The stipled curves were computed by hand 
in approximation (E). The horizontal dashed line shows the point (,s = 3), 
from which 722/??2 in approximation (E) was started at e = 0. The difference 
between 722/7j2 in approximations (/)) and (E) is quite large, and here the 
errors in rj and in £?2 seem to add, at low £-values. We believe that the accu
racy in £?2, at low values of e, is not quite satisfactory in any of the ap
proximations used.

One important reservation should be made as regards the above com
putations of v and < (v -v)2 > = -Q2. Apart from their definition as averages 
in the probability distribution P(v), these two quantities acquire a simple 
meaning if P(v) is approximately Gaussian, i. e. P~ C ■ exp (v-v)2/2 722}. 
However, sometimes the deviations from a Gaussian are noticeable. The 
probability distribution then has an asymmetric peak, with a most probable 
value v*  slightly smaller than v, and with a width at half maximum which 
may be considerably smaller than for the above Gaussian. There is also a 
tail towards high v-values, decreasing with a power of v of about - 2 to 
-2.5, and having a cut-otT at some high v-value. Examples of this kind 
were studied in a recent paper (Lindhard and Nielsen (1962)). In any 
case, it depends on the experiment performed whether one may use the 
average values v and k?2, or take recourse to the probability distribution. 
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In a particle detector, where damage events due to single particles are re
corded individually, one should normally consider the probability distribu
tion. However, if many events are recorded together, like the damage by 
thousands of particles in a solid, the events collect into a Gaussian distribu
tion, with average value N-v, and an average square fluctuation N-Q2, 
where N is the number of particles.

If the electronic stopping continued to rise as A-£1/2, (region II), there 
would be an upper limit to v(e). In the cases shown in Fig. 4 this upper 
bound may be obtained from (5.3); for k = 0.15 this leads to v<7.8. How
ever, at an energy £t~ IO3 the electronic stopping has a maximum and 
starts decreasing, so that approximately Se/Sn tends to a constant ~ IO3. 
Thus, in region III there is strictly no upper bound on v, but its increase 
is extremely slow. We did not continue the coded computations into region 
III, partly because a new stopping parameter would be required, and partly 
because simple asymptotic equations take over, long before region III is 
reached.
Asymptotic equations.

Let us first consider a semi-empirical approximation to v, which may be 
found from the numerical curves. In fact, from Fig. 4 it is seen that for large 
£ the function v is nearly reversely proportional to k, i.e. to the electronic 
stopping. This result cannot hold for £<1, where v^e. However, in this 
limit we found in § 4 that 77 = £-r is proportional to k, because the elec
tronic stopping is small and a series development may be made of the 
function ïj in powers of A. A simple comprehensive formula joining the 
two results v~^1(£)A_1 and v~e — kg2(k), is

’(6) l+bjtø’ (5.2)

where g(k) -> 0 for e ->0, and g(e) -> £ in region II. On the basis of the 
curves in Fig.s 3 and 4, we have estimated g(e) as shown in Fig. 9. It ap
pears that (5.2) with Fig. 9 reproduces v(s) within an accuracy of some 
percent, for all values of £ in regions I and II, and for the A-values of in
terest when Zr = Z2.

A convenient approximation, valid for large £, may be mentioned in 
connection with the numerical estimates. We note that for high energies E 
the differential cross section (1.4), as shown in Fig. 2, will be equal to the 
Rutherford cross section, doR, except when T < (E2/E) ->0. If therefore 
we integrate a function of T, tending to zero as T, we may replace (1.4)
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by the Rutherford cross section, integrated from the lower boundary 7’ =

where the constant Â is determined by \ 77/a = \ TdaR. We might
•’0 hvE

make this replacement in the accurate equation (2.7), but for the present 
purpose (4.1) is accurate enough. Since v(T) increases slowly at high T- 
values, we can replace the upper limit E by °° in the integral in (4.1) and 
find, expressed in the e-t variables, 

(5.3)

where t0 = 0.60, and C is a constant.
The formula (5.3) is a useful and rather accurate approximation, pro

vided e is larger than ~ 10. It may be readily integrated, without recourse 
to complicated coded computations. If we start using (5.3) at an energy 62. 
we may for instance fit r(e2) an(i v' (e2), the latter determining the constant 
C. We may normally disregard (dE/dQ)n and write de/dp = (de/dp),,. In 
region II we put (de/dQ)e = k-el/2, and in this case (5.3) leads to an upper 
bound for r(e), as mentioned on p. 31. We note furthermore that according 
to (5.3) the increase of v(e) is proportional to k1, in agreement with (5.2).

An equation similar to (5.3) may be derived for the average straggling 
£?2(e). For this purpose we consider equ. (3.4). Since the integrand on the 
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right tends to zero as 7’2 or faster, we may directly put da = daR for high 
energies and integrate from 0 to E, because the integral converges rapidly 
at T = 0. We may also simplify the right hand side, since clearly r(T) 
is the dominating term for small or moderate T, where the differential 
cross section is large. Because v2(T) saturates we then have the simple 
limiting approximation

(5-4)
Vo

We observe that the right hand side of (5.4), ^(e), tends to a constant for 
large e. The magnitude of v>(e) may be estimated roughly by putting (cf. 
(5.2)) v(x’) = .r-(l +/cr)1, leading to y(e) = v(e)-4 1 -> A-_14_1. Now, in re
gion II we then obtain (d/22/de) 2: ?(e)4_1 •Ar_1e'_3/2, leading us to expect 
that for large e the function £?2 is proportional to Å“2. Actually, this result 
fairly well corresponds to the curves in Fig. 8. In the opposite limit of low 
E-values we have found that £?2 /<2.

§ 6. Outline of Treatment for Z2

From the previous discussion it appears that the most direct connec
tion between experiments and theory may be achieved in the case of Zx = Z2. 
Unfortunately, there are as yet no measurements of this kind.

A brief treatment may now be given of more involved cases. We con
sider problems where the incoming particle does not belong to the medium, 
but the medium still contains only one atomic species ; we write briefly 
Zx Z2. As we shall see, our previous division into three energy regions 
can no longer be upheld. At the lowest energies the description remains 
comparatively simple, and experiments are available for comparison with 
theory.

We shall not consider cases where the medium contains more than one 
element. The formulation of accurate general solutions can here become 
quite complicated, but solutions of special cases may be worked out numer
ically. Several measurements are available.

Consider then an incoming particle with atomic number Z1 different 
from Z2. We assume that the case of Zx = Z2 is already solved, as described 
in the preceding paragraphs, and the corresponding solution for the energy 
given to atomic motion is v(E'). The unknown function for the case Zx =/= Z2 
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is denoted as v1(E). The integral equation for vi is obtained from (2.3), 
where we introduce approximation (D),

^(E)-Su - Jda, {?,(£-T)-^(£> + 5(7)}. (6.1)

Here, Sle is the electronic stopping cross section for the ion Zx in the medium 
Z2, and is the differential cross section for an elastic nuclear collision 
between an ion Zi and an atom Z2, with corresponding stopping cross sec
tion Sln.

In (6.1) enters v(7’), where T<Tm = yE; y = 4 MiM2/(Mi + M2)2. Our pre
vious division into three regions was characterized by the energies Ec and Ei, 
belonging to the atoms Z2. Putting Ec and Ei equal to the maximum recoil energy 
7\„ we obtain for the particle Zi two characteristic energies E2C = V~YEC and 
E21 = y-^Ei. However, the stopping cross sections STe and Si7( for the particle 
Zi give rise to a further subdivision. In fact, at energies lower than E\c we may 
assume that Sie/Sira increases slowly, with a power of E between 1/2 and 1/6. 
At the energy E\c the ratio Sie/Sira is comparable to 1. Next, above E\c there is 
a decrease in Sin while Sie continues to rise as E1!2 until the energy En is attained. 
For still higher energies S\e decreases and the ratio Sie/Si» increases towards a 
constant —103. Formally at least, we might then distinguish between five energy 
regions, separated by the energies E20 E\c, E21 and En.

We limit the discussion to the lowest energy region. It is bounded upwards by 
either E±c or E2c- Approximate values of these energies are Eic ä A3(A 1+A2)_2 
Z4/3ZY1/3-500 eV, and E2c S (Ai + A2)2 • A71 Z2 • 125 eV. When Zj»Z2, Eic will 
be larger than E2c, while for Z2»Zi the energy E2c becomes considerably larger 
than Eic. For Z\ = Z2 the two energies are of course equally large.

Assume now that the energy is below E\c and E2C- We may then make the 
same approximation as in § 4 in region I. As an example we consider the standard 
case s = 2, leading to energy independent nuclear stopping cross sections, so that 
S'le/Sin = (E/Eic)1/2 and SeISn = (EIEc)rl2. Forv(E) we can then apply approxima
tion (4.6) with ai = 1. The corresponding series development may be made in 
(6.1), i.e. in approximation (E). Using the expression (1.3) for da we obtain

7/1 = E-ri = AE3/3, for E<E1C, E2c, (6.2)

where A = | {#ic1/2+^71/2£71/2} •

Next, we determine the straggling ß2 in zq . With the same low energy approx
imation as in (4.10), we apply (3.5). Like in (4.10) the relative straggling in rji be
comes a constant,

1 (/ vl/2 7\2 7)
ß2(E>2(E) = +f6|, E<E1C, E2c. (6.3)

The method actually used by us in solving equ. (6.1) is the following 
one. We introduce the e-Q-t variables described in § 1, and consider 
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those regions where electronic stopping cross sections are proportional to 
e1/2. The problem then contains two empirical constants, k and klt i.e. 
the proportionality factors in electronic stopping for particles Z2 in Z2 and 
Z} in Z2, respectively. The values of k and kx are estimated in (1.2). Two 
further parameters enter, one being the mass factor, y = 4 M1M2/(M1 + M2f, 
and the other the ratio, z, between the «-units for the particle pairs (Zlt Z2) 
and (Z2, Z2). The solutions are then of type of iq = jq(e; k, k1; À, y) and 
£?2 = £?2(e; k, k±; 2, y). A programme was coded for electronic computa
tion on this basis, and solutions have been obtained in a number of cases. 
Three sets of solutions of this kind are quoted below. Other solutions were 
utilized in a recent paper on damage in Si (Denney et al. (1962)).

The numerical solutions should be regarded with some reservation, and 
they are of limited applicability. Firstly, they apply only at the low energies 
where electronic stopping cross sections are proportional to e1/2. This can 
be remedied by continuing the solutions by means of asymptotic equations 
similar to (5.3) and (5.4), cf. (6.6). Secondly, the connection to an actual 
measurement is rather longwinded and uncertain. The usefulness of the 
average quantities iq and £?2 can differ much from one set of (Z1? Z2) to 
another. In any case, the three examples in the following may illustrate 
some of the difficulties.
Ionization efficiency.

One important experimental observation is the number of ion pairs Nt 
produced by a certain incoming particle; in a solid state detector we let 
Nt represent the number of electron-hole pairs. We shall not discuss the 
detailed mechanism by which electrons create ion pairs, but only note that 
the energy per ion pair, Wß = Electron/M*  approximately constant for 
swift electrons.*  In the present case of an arbitrary incoming particle it is 
therefore natural to consider the total energy given to electronic motion, 
and expect that the average number of ions is approximately given by the 
relation

Evidently, if fluctuates, Nt should fluctuate proportionally. An average 
square fluctuation in rj, ß2(£'), must therefore contribute to the average 
square fluctuation, (d A^)2, in Ni by the amount

(dN,)| - (6.5)
* Experimental and theoretical discussions of W-values for electrons and a-particles are 

given in recent papers by Jesse (1961) and Platzman (1961). The deviations of Wa/W^ from 
unity in polyatomic gases indicate one limitation in the accuracy of (6.4).

3*
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Fig. 10. Curves for vl (E) and (£,’) for a-particles in Si. Solid curves correspond to the coded 
computations. Dashed curves include corrections for decrease in electronic stopping, cf. (6.6).

but this is not the only cause of fluctuation of Nt. A direct statistical effect 
in ion pair production is that considered by Fano (1947), where the average 
square fluctuation was found to be (ANi)p = F-Ni, with F<0.5, i.e. in 
some respects similar to a Poisson distribution. In many cases the fluctua
tion (6.5) dominates over the Fano effect.

In a treatment more precise than (6.4) and (6.5) one would introduce Ni directly 
as the variable ÿ in the basic integral equations. In fact, the basic case in production 
of ion pairs is an electron passing through a medium, and one must at first solve 
(2.2') for ^e(F) = Nie(E), i.e. the average number of ion pairs produced by an 
electron of energy E. Next, (2.1) is solved (Zi = Z2) with respect to Nt(E), Nie(E) 
being a source term. Thirdly, equ. (2.3) for Nn(E) is solved. The Fano fluctuation 
is an estimate of the fluctuation in the first step only.

a-particles in Si.
Our first example of numerical computations illustrates the ionization 

by charged particles in a detector. We consider a-particles in Si, i.e. a 
solid state detector, but the results are quite similar to those for a-particles 
in A. In Fig. 10, the full-drawn curves show the behaviour of î'i(jE') and 
Q1(E), as obtained from the coded computations mentioned above. Now, 
electronic stopping for a-particles in Si is proportional to velocity only up 
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to about 0.7 MeV, where a maximum obtains, upon which the stopping 
decreases as ~ z?“1. The full-drawn curves in Fig. 10 are therefore under
estimates at energies above 1 MeV. A correction can be made rather easily, 
since v(E) for Si ions in Si at the energies in question is given in e.g. Fig. 
6, or by (5.1), so that the asymptotic equation is

where the right hand side is known, and /o = 0.60. A similar treatment 
may be made for ßj(e). In this manner the two dashed curves were ob
tained for ï>i(E) and f21(E) in Fig. 10. By means of (6.4) and (6.5) may be 
found the resulting effects on signal size, Nt, and on signal fluctuation, 
d N? . However, the fluctuation is so large that the distribution in must 
differ considerably from a Gaussian. The quantities iq and are then 
less relevant than the most probable value of v1( the width at half peak 
height, and the shape of the tail in the probability distribution. In a recent 
note (Lindhard and Nielsen (1962)) the latter quantities are obtained by 
a method much simpler than the above one.

Ionization by a-recoils.
The recoil nucleus in a-decay is a very heavy particle with an energy 

of only 100—200 keV. In this case 7ÿ1(E) « E, and a conspicuous effect 
should be observed in the number of ion pairs, according to (6.4); Detailed 
measurements have been made by B. Madsen (1945), for Po, ThC and 
ThC' a-recoils. In argon containing about 5 percent air, Madsen observed 
the average number of ion pairs, Nt, and also the width of the distribu
tions.

The corresponding coded computations of v1(E) and &i(E) for a heavy 
recoil particle in pure argon have been performed. The three recoil nuclei 
have practically the same atomic number, and differ only in energy. The 
resulting behaviour of rji(E)/Wß is shown by the full-drawn curve in Fig. 
11. In the figure is also shown the result, if power law scattering with s = 2 
is assumed, as indicated by the dashed line. The three experimental points 
of Madsen are his values for Nt, assuming Wa = Wß = 26.4 eV, the energy 
per ion pair in pure argon. The points lie below the solid curve and, 
in view of the uncertainties, the agreement must be said to be satisfactory. 
From Madsen’s curves the mean square relative fluctuation, , may
be estimated roughly. It is of order of ZlAf/Af ~ 0.02. This is considerably
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Fig. 11. Comparison with three a-recoil measurements by B. Madsen. Solid curve is (E)/Wß 
computed numerically. Dashed curve corresponds to the power law approximation (6.3). Com

parison assumes Wa=Wß, but magnitude of this constant is not important.

larger than the numerically computed average square straggling, Ql/rfi ~ 
0.002, but in approximate agreement with (6.3), i.e. s = 2. The latter is 
possibly fortuitous, and further measurements in the region of extremely 
low velocities are desirable.

Ionization by fission fragments.
As a third example we may consider the ionization by fission fragments 

in various gases. The question of the ionization efficiency of fission frag
ments was studied experimentally by Schmitt and Leachman (1956), cf. 
also Utterback and Miller (1959). Schmitt and Leachman observed the 
variation of the number of ions, Nt, with fragment energy in several gases. 
It turned out that Nt was not quite proportional to the energy of the frag
ment. They therefore considered the difference between E and the energy 
Ea = Wa'Ni(E), where is the energy per ion pair for natural
a-particles. This difference, A = E-'WaEli, was called the ionization defect. 
Now, if (6.4) holds very accurately, and if Wa = Wß, it is apparent that A 
becomes equal to the present function ^(E). However, since the observed 
A’s are only some 5 percent of E, and since in some cases already VVa can 
deviate from Wß by several percent, it is abundantly clear that a comparison 
between A and v1 is only qualitative, as long as the excitation and ionization 
cross sections for fission fragments have not been studied in detail.
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The coded computations of ïq and were carried through for fission 
fragments in a number of substances, taking one representative of the median 
light group = 39, Ax = 94.7, Elnitlai = 98.9 MeV), and one representative 
of the median heavy group (Z± = 53, Ax = 138.8, Einitial = 66.9 MeV). 
Several results of this kind are given in a recent paper (Lindhard and 
Thomsen (1962)). Results are quoted in Table 1 for the two groups of fission 
fragments with initial velocities in Ne and A, as compared with the observa
tions of A by Schmitt and Leachman. There is quantitative agreement, 
and more could hardly be expected. It is seen that is systematically 
smaller than A, which is not surprising since the value to be used for W 
may be greater than VVa.

Table 1
Ne A

A (MeV) (MeV) A (MeV) Vi(MeV)

Heavy group........... • 4.8 ±0.7 2.5 5.5 ±0.5 3.1
Light group .............. 4.3 ±1.0 1.6 5.1 ±0.8 2.0

Fluctuations have not been studied experimentally. As examples of the 
numerical computations it may be mentioned that for the heavy fission 
fragment group with initial velocities in Ne and A the values of Æj/iq are 
0.066 and 0.097, respectively.

In an interesting theoretical treatment of the ionization yields of fission 
fragments Knipp and Ling (1951) have used a differential-integral equation 
for the average ionization of similar type as (E) in the present paper. More
over, they introduced the description by ionization defect A employed by 
Schmitt and Leachman. The estimates of atomic collision cross sections by 
Knipp and Ling were necessarily somewhat uncertain. They considered the 
case of fission fragments in argon. For argon in argon their maximum 
ionization defect A was 780 keV, while our upper bound on v1 in region II 
(cf. p. 31) gives 600 keV for argon in argon. For the two fission groups in 
argon their estimates of A are also somewhat larger than our values of v1. 
Knipp and Ling made use of the connection to Madsen’s measurements.

Production of lattice defects.
In the present context mention should be made of the damage produced 

in a crystal lattice by irradiation. A general survey of radiation damage in 
solids is given by Billington and Crawford (1961). Consider a solid 
composed of one element only. We may let <p represent e.g. the number 
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of vacancies Nv produced by a particle with Zi = Z2. The discussion below 
applies just as well for the production of other lattice defects. In first approx
imation Nv should be proportional to the energy given to atomic motion, v. 
The average value of Nv is therefore expected to obey an equation similar 
to (6.4)

where Uv may be regarded as an empirical constant. The relation (6.7) 
probably affords a more direct experimental check of the present results 
for v and rj than does equ. (6.4). The reason is that in most cases v« E and 
r[ E, as in the ionization efficiency of fission fragments.

Uv can also be estimated theoretically from (2.5), i. e. approximation 
(B“1), valid at low energies where no energy ends up in electronic motion. 
Having derived a constant Uv at such low energies, we have also justified 
the use of (6.7) at higher particle energies.

Several estimates have been made of the connection between Uv and 
atomic binding (Snyder and Neufeld (1955, 1956) and others, cf. Seitz 
and Koehler (1956), Billington and Crawford (1961)). It has become 
customary to use hard sphere ion-atom scattering, i.e. dan= const. dT. 
Our present cross sections in § 1 are much more forward peaked and lead 
to a higher value of the ratio between Uv and atomic binding.

The fluctuation in Nv, (d Nv)2, has a contribution from the fluctuation 
in v. We find analogously to (6.5), (d Nv)^ = Ï22(E)/U2. The magnitude of 
the relative fluctuation in Nv may be read off directly from the curves in 
Fig. 7, for Zx = Z2.

In approximation (IE1), and with hard sphere ion-atom scattering, Leib- 
fried (1958) has derived a fluctuation in Nv, (d NV)2L = 0.15 Nv, analogous to 
the Fano ionization fluctuations. Already at quite low energies the fluctuation 
of Leibfried is completely overshadowed by the present fluctuations.

The above relations, together with our previous computations of v(E) 
and f22(E), cover the question of Nv and its fluctuation for Z1 = Z2. If 
Zx =# Z2 some cases are represented by the examples in this section, and 
others by Lindhard and Thomsen (1962). An interesting further example 
is the damage produced by neutrons, where the production spectrum of 
recoils by neutrons, times r(B) from § 5, may be integrated to give the 
production of lattice defects.

Finally, it should again be emphasized that (6.7) is an approximation. 
If necessary, more accurate treatments may be made. Thus, let us consider 
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the behaviour of NV(E) at high particle energies. Here, an increasing frac
tion of the energy transfers to atoms are so small in magnitude that lattice 
bindings need not be disrupted. In fact, the logarithmic increase of the right 
hand side of (5.3) for increasing e is due to such small energy transfers. 
In the evaluation of Nv we may therefore at a sufficiently high energy re
place loge by a constant, but this does not result in a large correction.

In conclusion we wish to express our deep gratitude to all who have encouraged 
us and assisted in this work. Miss Susann Toldi has given untiring assistance in 
the preparation of the manuscript.

Institute of Physics, 
University of Aarhus.

Note added in proof. In a recently published article by Abroyan and Zborovskii 
(Soviet Physics Doklady, 7,417 (1962)) the ionization pulse by potassium ions in a germa
nium detector is measured at ion energies ~ 1 keV. The authors find that the ratio ß between 
the pulse for K ions and for electrons with the same energy is ß = 0.032, 0.071, 0.114 and 
0.135, for E = 0.5, 1,3 and 8 keV, respectively. Now ß should be equal to rßE, and the simpli
fied theoretical formula (6.2) gives (jßE) = 0.051 E112, where E is measured in keV. This is 
in excellent agreement with the experimental values of ß. However, numerical estimates 
corresponding to (5.2) are nearly a factor of 2 higher. In view of the smallness of ß the 
results are promising in any case.
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Synopsis
Results of an investigation into the possibilities for a quantitative interpreta

tion of autoradiograms on the basis of grain counting or track counting are 
presented. The relation between track length, number of grains, and initial 
energy of the beta particle is studied, and the blackening produced by a point 
source of a beta emitter, e. g. carbon-14, surrounded by nuclear emulsion is des
cribed in terms of the distribution of grains in space. It is shown how an ana
lysis of this type can be carried out for any pure beta emitter. Howeve", the 
present measurements are confined to beta particles of up to c. 400 keV.
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Chapter I
I, 1. Introduction

When ionising particles, such as beta particles emitted by radioactive 
nuclides, pass through a photographic emulsion, some ol‘ their energy 
is transferred to the emulsion, and a number of silver halide grains 
is rendered developable. Due to this property, photographic emulsions have 
been used in order to demonstrate the presence of a source of beta par
ticles in a specimen. In biological terms, this has often involved the re
cognition or identification of labelled cells in a tissue section or smear.

The autoradiographic techniques that have evolved fall broadly into 
two categories—those in which a relatively thick emulsion layer (of the 
order of 100 microns or more) is used and the passage of a beta particle 
is recognized as a continuous track of silver grains, and those in which 
a thin layer of emulsion (of the order of 10 microns or less) registers beta 
particles as a few blackened grains at most.

Clearly, the greater the number of ionising particles traversing a layer 
of photographic emulsion, the greater the number of tracks or grains one 
might expect to find. In principle, there is no reason why this method of 
recording the presence of ionising radiation should not be used in a strictly 
quantitative manner. In other words, it should be possible to calculate the 
number of beta particles entering a given volume of emulsion from the 
number of grains or tracks formed.

I, 2. Relative quantitation

Autoradiography has been used to provide estimates of the degree of 
labelling of one source relative to that of another by comparing the number 
of grains or tracks in comparable volumes of emulsion overlying or sur
rounding the sources studied. Also this type of quantitation, which should 
be called relative in contradistinction to the absolute measurements re
ferred to in the previous section, requires strict control of technique at four 
stages, if it is to be reliable.
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First, the source to be studied must be presented to the emulsion in 
such a way that loss or translocation of isotope does not occur, neither be
fore nor during exposure. This prerequisite is difficult to ensure with bio
logical material. The assumption is often made that loss of isotope during 
histological processing, if it does occur, will be the same in various parts 
of the tissue, so that a comparison of residual activities in different regions 
gives reliable information on the relative amounts of radioactive material 
present in vivo. Levi, 1957, working with crystals of S-35 labelled barium 
sulphate, has drawn attention to the possible movement of even sparingly 
soluble radioactive material, particularly in ionic form, into and through 
the emulsion during exposure.

The second critical factor in technique is the geometrical relation between 
source and emulsion. Unless this is shown to be the same for the various 
structures whose autoradiograms are to be compared, the results cannot be 
related accurately. If, for example, one cell type is larger than another, 
or lies deeper in the tissue section (i. e., further away from the emulsion), 
if the emulsion layer is thicker in one place than in another, or the section 
varies in thickness, relative quantitation becomes an illusion, unless these 
factors have been recognised and corrected for (cf. Levi, 1957; Perry, 
1961).

The third prerequisite for relative quantitation is the standardisation 
of the photographic processing. Conditions of exposure, viz. temperature, 
humidity, and the presence of oxidising agents, affect the stability of the 
latent image. Moreover, the type, the concentration, and the temperature 
of the developer have considerable influence on the image produced.

Finally, the grains or tracks in the relevant volumes of the emulsion 
must be counted, and the results compared. This comparison rests on the 
assumption that the emulsion response is linearly related to the number 
of incident particles. It is well known that at grain densities higher than 
those which can be evaluated visually, emulsion saturation begins to play 
a part, so that proportionality between incident radiation and emulsion 
response no longer prevails. It is, therefore, important that the exposure 
lime be chosen so that all structures to be compared show blackening which 
does not exceed the linear part of the characteristic curve (H- and D-curve; 
Mees, 1952).

From the above it is clear that relative quantitation of autoradiograms 
is feasible only under carefully controlled conditions. However, it is worth 
keeping in mind that the sources of error become increasingly significant 
as the differences in labelling of different structures to be compared become 
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smaller. Aside from the purely technical problems, it is in the nature of 
radioactive decay that all observations are subject to statistical fluctuations, 
which brings an additional uncertainty to the evaluation.

1,3. Absolute quantitation

The exact determination of the number of beta particles entering a 
given volume of emulsion, and hence the number of disintegrations taking 
place in the source per unit time, requires still more stringent control of 
technique. Obviously, the requirements discussed in the preceding para
graph must be fulfilled and, in addition, the emulsion response, i. e. the 
number of grains or tracks observed in the emulsion, must be converted 
into the number of disintegrations taking place in the source.

Grain counting.
Attempts al correlating the number of developed grains observed in the 

emulsion with the amount of label in the source have been made by several 
investigators (Howard and Pelc, 1951; Herz, 1957; Lajtha, 1952; Mari
nelli and Hill, 1948; Lammerton and Harris, 1954; Odeblad, 1950). 
They defined lhe term grain yield as the number of grains produced in 
an emulsion layer by a source which, in the majority of cases, was separated 
from the emulsion. Grain yield will then depend first of all on lhe geo
metrical relation between source and emulsion, and on a great many other 
variables.

Tables of grain yield are available in lhe literature (loc. cit.). Each 
figure represents the grain yield as determined under the conditions of one 
particular experiment. Some of these determinations have been made by 
covering a large, uniform source of beta particles with a thin layer of emul
sion. The average optical density of the processed emulsion (after exposure) 
and the average number of incident beta particles were measured in
dependently, and the number of grains produced per incident particle 
was calculated. Some investigators made use of a point source and deter
mined the “grain yield’’ as above. However, since grains produced by a 
point source of beta particles may be found at a considerable distance 
from their origin, it is misleading to present a figure for grain yield 
without specifying the volume of emulsion within which the grains were 
observed.

Il is therefore difficult to justify the use of such figures in converting 
grain counts into terms of disintegrations in the source under different 
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experimental conditions. Autoradiographic grain yield in this sense is 
comparable to the efficiency of a Geiger counter which is different in each 
arbitrary counting arrangement.

Track counting.
The determination of the number of disintegrations taking place in a 

source by means of track autoradiography requires the recognition of every 
track originating from the source.

A first attempt at correlating the number of beta tracks observed in the 
emulsion with the amount of label in the source was made by Levi, 1954, 
who suspended C-14 and S-35 labelled algæ and yeast cells in Ilford G-5 
emulsion. In these experiments, absolute quantitation was not even at
tempted in view of the variation in the degree of labelling of individual 
cells. When the same author used uniformly labelled barium sulphate 
crystals as beta emitters (1957), useful information on the possibilities of 
track autoradiography for absolute quantitation was gained. However, this 
system proved unsatisfactory mainly because of artefacts due to the solu
bility of the crystals.

Levinthal, 1957, devised experiments based on absolute quantitation 
of beta track autoradiography. He suspended virus particles labelled with 
P-32 in thick layers of G-5 emulsion. The position of a virus was recognised 
by the star of beta tracks originating from a common centre. Levinthal 
el al. (loc. cit.) were able to prove that the number of tracks in a star was 
a direct measure of the number of disintegrations that had occurred in the 
virus during exposure.

A possible approach.
An approach to absolute quantitation of autoradiograms can be made 

by establishing the possibility for quantitative track autoradiography and 
from there to proceed to an investigation into the quantitation of grain 
autoradiograms.

The starting point could be the study of a mathematically simple model, 
for example a point source ('milting beta particles with a known energy 
spectrum, surrounded on all sides by an emulsion layer of infinite thickness 
as compared to the maximum range of the particles. If the source is small 
enough for self-absorption to be negligible (a prerequisite fulfilled in the 
present experiments, but seldom realized when the beta particles originate 
from biological material), the only adjustments that need be applied to the 
observed track count are 1 ) a correction for beta particles that have failed 
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lo give rise to a recognisable track and 2) a correction for background 
tracks due to cosmic radiation.

An adequate description of this simple model must include an analysis 
of the relationships between particle energy, track length, number of grains 
per track, and spatial distribution of silver grains relative to the source. 
It then becomes possible to express the disintegration rate in the source
both in terms of track counting and of grain counting.

The question remains, however, whether the description of the simple
model will open the way for an analysis of the much more widely used,
but mathematically complex systems where the source is covered by emulsion 
only over part of the space angle, and different media (air, gelatin, glass) 
surround the source over the remaining space angle. In this latter model, 
difficulties arise not only from the more complex geometry, but mainly 
from the fact that media with different densities will make range and yield 
evaluations extremely difficult. Practically all autoradiographic studies on 
biological material—by means of stripping film or thin coats with liquified 
emulsion—fall within the last mentioned category.

The work to be reported in the present paper was undertaken to follow 
up earlier investigations dealing with the above mentioned simpler case: 
source embedded in emulsion (Levi and Nielsen, 1959). By studying 
sources of molecular dimensions in Ilford G-5 emulsion and using beta 
emitters with a wider range of energies, the relationships between particle 
energy, number of grains per track, and spatial distribution of grains rela
tive to the source were investigated. Some discrepancies between results 
reported earlier by Levi and Nielsen (loc. cit.) and by Zajac and Ross 
(1948) required clarification.

I, 4. Definition of terms
Grain yield.
The factor which relates the number of grains to the number of ionising 

particles producing them is known as the grain yield. It is defined as the 
ratio of the number of developed grains in a given volume of the emulsion 
to the number of ionising particles entering this volume. Several factors 
affect grain yield. They may be considered in three main groups.

1) The nature of the source: The energy spectrum of the isotope is 
the first consideration. Beta particles of tritium (E-max = 18.5 keV) will 
produce fewer grains in emulsion than those of radiophosphorus (E-max 
= 1.6 MeV).
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2) The nature of the emulsion: If one emulsion is more highly sensitised 
than another with equal grain size, the grain yield will be higher in the 
former than in the latter. If, in two emulsions of equal sensitivity, the grain 
size of the first is smaller while the total coneentration of silver halide is 
the same in both, a given loss of energy by an incident particle is likely to 
produce more grains in the first than in the second emulsion.

3) Conditions of exposure: Conditions of exposure will all'ect grain 
yield because, f. ex., oxidising agents or water promote latent image fading. 
It has also been demonstrated that, to a lesser extent, the time of develop
ment, the chemical composition of the developer as well as the temperature 
will influence the number of grains rendered visible in the emulsion (cf. 
Demers, 1959; Ahmad and Demers, 1959).

Beta tracks.
Tracks produced by beta particles in nuclear emulsion are characterised 

by the zigzag path of the particles and the irregular spacing of the silver 
grains in each track. The higher the energy of the beta particle, the longer 
its track and the wider its grain spacing in the beginning of the track. With 
decreasing energy, scattering and grain density (number of grains per unit 
path) increase.

A track is usually defined as 4 or more silver grains in a row. Therefore, 
a particle belonging to the low energy part of the continuous beta spectrum 
of any isotope may not produce sufficient grains to be recognised as a 
track. In the case of P-32, the proportion of unrecognisable tracks is very 
small and, at the same time, the majority of the tracks is fairly straight up 
to a considerable distance from the source (cf. Levinthal’s “stars”, 1957).

In the case of C-14, the energy of a large fraction of the particles is so 
low that they will not produce recognisable tracks, because even 3 grains 
in a group cannot be distinguished from random arrangements of back
ground grains. This problem has been studied in detail by Levi and Niel
sen, 1959.

Delta tracks.
Beta particle tracks in nuclear emulsions sometimes branch. Branching 

occurs when the particle, on its passage through matter, imparts sufficient 
energy to an orbital electron to knock it out of orbit. Since the ejected elec
tron has the same mass and charge as a beta particle, the characteristics 
of its track are the same as those of the primary particle. The orbital elec
tron is known as a delta ray. The two branches of the resulting track con
figuration lie very nearly al right angles to each other.
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Range-energy relation.
The term “range” has been applied to beta particles in two different 

senses. Il is frequently used to describe the point-to-point distance travelled 
by a beta particle of a given energy in a medium of known composition. 
It is just as often used to denote the furthest distance from the point of 
origin that a beta particle of given energy will reach in a medium of known 
composition. Since beta particles undergo scattering on their passage through 
matter, the “range” by the second definition is always shorter than that 
given by the first. For low energy betas, f. ex. C-14, the difference between 
the two distances is appreciable.

To avoid confusion, the grain-to-grain distance travelled by a beta 
particle in the emulsion will be referred to in the present paper as the track 
length. The distance from the origin of the track to the point furthest away 
from the origin will be called the radius of the track. This is, obviously, 
the radius of the smallest sphere around the point of origin that contains 
the entire track.

The mean track lengths of beta particles of known energy can be pre
dicted with great accuracy from theoretical considerations. Demers has 
constructed a table relating mean track length to energy for beta particles 
in Ilford G-5 emulsion, and this relationship is confirmed experimentally 
(cf. Zajac and Boss, loc. cit.).

The maximum probable radii for groups of beta particles have been 
investigated by interposing absorbers of known density between the source 
and the detector. This is the familiar “range” determination expressed in 
terms of mgm/cm2 (cf. Glendenin, 1948).

The relationship between track length and radius has not been invest
igated except by Herz, 1949, who studied the depth of penetration of beta 
particles into a layer of nuclear emulsion.

Chapter II
Experimental

II, 1) Materials

The beta-emitting isotopes used in this work were
1) carbon-14 (Emax 155 keV) as labelled glucose in aqueous solution 

and as labelled yeast cells suspended in water;
2) calcium-45 (Emax 250 keV) in ionic form, carrier-free in water;
3) chlorine-36 (Emax 714 keV) in ionic form, carrier-free in water.
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The emulsion was Ilford G-5 nuclear emulsion in gel form which was 
used within two weeks of dispatch. Prior to use, the emulsion was stored 
in a refrigerator at 4°C within a lead shield.

3"xl" microscope slides were thoroughly cleaned in chromic acid, 
washed over night, and “subbed”, i. e. coated with a thin gelatine layer, 
as prescribed for use with stripping film.

11,2)  Preparation of slides without cells (sandwich plates).
The stock solution containing the radioactive tracer was diluted with 

distilled water to a concentration which, by trial and error, was found to 
produce a reasonable track density in the emulsion in the course of 18—40 h 
of exposure.

In the dark room, the subbed slides were placed on a levelled glass 
surface at room temperature (20-25°C). In safelight, the required volume of 
G-5 emulsion was transferred to a 25 ml measuring cylinder placed in a 
thermostatically controlled water bath at 42°C. In the course of 10 min, 
the emulsion had liquified. Subsequently, the molten emulsion was filtered 
through gauze, into another measuring cylinder, and diluted with half its 
volume of distilled water preheated to 42°C. After 2-4 min of gentle stirring 
at 42°C, to ensure complete mixing, the diluted emulsion was filtered a 
second time and kept in a measuring cylinder in the water bath ready for 
use. Using a Carlsberg pipette with a wide (broken) tip, 1 ml of the molten 
diluted emulsion was withdrawn and mixed, in a small glass jar, with 
100/d of the aqueous solution containing the tracer.

With another Carlsberg pipette, 1 ml of molten, diluted emulsion was 
placed on each slide, and spread gently with a fine paint brush to cover the 
whole surface of the slide. This layer was then left to gel for about 15 min. 
Next, one drop of the emulsion containing the radioactive isotope was 
placed in the centre of the slide and spread to cover an area of 2x3 cm2. 
Finally, 1 ml of inactive emulsion was pipetted on top and spread to cover 
the whole slide.

The slides were left on the levelled glass plate in the dark in a gentle 
current of air for about 3 h, when they appeared dry. They were then 
placed in plastic slide boxes, and the open boxes were transferred into a 
desiccator containing dry silica gel. A current of dried C()2, obtained from 
evaporating dry-ice in a flask, was passed over the plates for about 20 min 
and, finally, the slide boxes were stored in a refrigerator at 4°C inside an 
iron and lead shield.
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Blanks were prepared in exactly the same way omitting, however, the 
central layer of emulsion containing the tracer.

The preparation of, say, 10 plates would require about 80 minutes, 
until drying began. Since the emulsion does not register tracks while the 
water content is high, the beginning of exposure cannot be timed exactly. 
It was estimated that the uncertainty of the exposure time of 20 h. was 
about 10%.

Preparation of slides with labelled cells.
A series of plates were prepared containing yeast cells labelled with 

C-141. The yeast, schizosaccharomyces pombe, was cultured for 24 h in 
a medium containing C-14 glucose. The cells were carefully washed 3 times 
in distilled water and resuspended in distilled water. In preparing the 
slides, a dilute suspension of cells was used to dilute the molten emulsion. 
1 ml of emulsion containing the labelled cells was pipetted onto the slides 
and spread to cover the whole surface. Conditions of drying and exposure 
were the same as described above.

II, 3) Processing

The developer was made up as follows: 2.2 g of sodium sulphite (7 H2O) 
were dissolved in 100 ml of dist. water. 0.46 ml of a sodium hydrogen 
sulphite solution (spec, gravity 1.34) were added to 210 ml of dist. water. 
These solutions were mixed and 1 g of Amidol was added. The developer 
was filtered and used immediately.

Development of the plates followed the temperature cycle method of 
Dilworth et al. (1948), with a modification suggested by Hauser (1959), 
who obtained more uniform development of thick plates, if the slides were 
soaked in full strength developer at 5°C and then immersed in dilute devel
oper during the warm stage. Unless otherwise stated, the following routine 
was adopted.

The slides were taken from the exposure boxes in the refrigerator and 
placed in developer at 5°C in the refrigerator for 15 min. They were then 
transferred to a dish containing one part of developer diluted with two 
parts of distilled water. The dish was kept in a thermostatically controlled 
water bath at 20°C and the plates were developed in this warm stage for 
25 min. They were then transferred to a stop bath of 1 % acetic acid at room

1 The authors gratefully acknowledge the help of Dr. C. Chapman Andresen, Carlsberg 
Laboratory, who prepared the C-14 labelled yeast cells. 
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temperature for 15 min. During this period, the emulsion surface was gently 
swabbed a few times with moist cotton wool.

Fixation took place in 3 changes of 30 °/0 hypo at room temperature 
with gentle mechanical stirring. The volume of each change of hvpo was 
1 liter and the fixation time 7 h. Finally, the slides were washed in running 
tap water for 3 h and in distilled water for additional 30 min. They were 
dried in air in a horizontal position and under a dust cover.

11,4)  Measurement of emulsion thickness

Several slides of both types were taken from the dark room after drying 
(unprocessed) for measurements of emulsion thickness. The slides were 
measured mechanically (micrometer), optically (microscope), and by 
weighing. The optical thickness estimates were obtained by cutting a thin 
channel through the emulsion layer approximately in the middle of the 
slide. Under the microscope, the upper surface of the emulsion layer and 
the upper surface of the glass slide exposed in the channel were brought 
in focus, and the distance between these surfaces was read on the fine 
adjustment screw of the microscope. The graduation of the fine adjustment 
provided a direct measure of emulsion thickness.

All slides were weighed before and after application of the emulsion 
layer. Since the density of the dried emulsion is given by Ilford to be 3.85, 
the thickness of the layer could be calculated.

The results obtained by the three methods agreed well, although the 
thickness determined by weighing was consistently less than that found 
optically or with the micrometer. The former gives a mean value for the 
whole surface of the slide, while the two others give the emulsion thickness 
in the centre of the slide. The results are listed in table I.

Table 1
Emulsion thickness

Method Sandwich slides Single layer

Micrometer..................................... 130 fi (125-140) 55 /z (50-60)
Weighing....................................... 116 /z 50 ft
Optical............................................ — 57 fi (48-68)

Accepted value............................ 130 /z 55 [L
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II, 5) Microscopy

In order to reduce the errors involved in measuring distances in the 
emulsion in a plane perpendicular to the surface of the slide, re-swelling of 
the emulsion was found advantageous. After photographic processing, the 
plates were soaked in 20% glycerol for 30 min, excess moisture was re
moved with a fan and, subsequently, the slides were mounted using a drop 
of Farrant’s medium and a cover slip. The resulting preparation was found 
to be optically satisfactory. The refractive index of the emulsion was deter
mined to be about 1.56.

The thickness of the emulsion after re-swelling was estimated optically. 
21 measurements carried out on 7 different sandwich plates ranged from 
100-149 microns with a mean of 125 microns, and this was regarded as 
sufficiently close to the estimated thickness during exposure of 130 microns.

All optical measurements were carried out by one observer (A.W.R.) 
using a Leitz ortholux microscope with a Ksx45 objective and x 1 0 Brillen
träger oculars. One ocular contained a graduated scale. The length of this 
scale was calibrated by means of a reference micrometer slide.

Distances parallel to the surface of the slide were measured with this 
scale, and distances in the optical axis of the microscope were measured 
using the graduation of the fine adjustment screw of the microscope.

Track lengths were measured from the first grain of the track, which 
could easily be identified in most cases because beta tracks show a char
acteristically higher grain density and larger grain size at the termination 
of the track. For length measurements, each track was divided into a num
ber of relatively straight sections. The projected length of each section in 
the plane of the slide as well as the “dip”, i. e. the length in the optical 
axis of the microscope, were determined, and the true distance traversed 
was calculated as the hypotenuse of the right-angled triangle thus con
structed. Where delta tracks were encountered, this fact was recorded and 
the length of the delta track measured.

As mentioned previously, the number of tracks in the emulsion was 
adjusted so that tracks seldom overlapped or came so close as to cause 
confusion. At this track density, it was very unlikely for two tracks to lie 
end-to-end. Wherever doubt arose whether a particular configuration of 
silver grains represented one or two tracks, the pattern was interpreted as 
one continuous track.
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Chapter III
General outline of the experiments and their interpretation

III, 1) General

The purpose of preparing so-called sandwich slides was to confine the 
origins of the beta tracks to a narrow layer of emulsion, separated from the 
supporting glass slide and the air by at least 50 n of emulsion. This aim 
was not fully achieved. Although the majority of the tracks started in the 
centre of the emulsion layer, the origin of some tracks was only within about 
30 o of the glass support and 25 // of the upper surface. Presumably, the 
warm emulsion of the active drop melted the inactive emulsion layer im
mediately beneath it, and a certain amount of mixing occurred also later 
when the top layer was added. Diffusion of the labelled ions during exposure 
cannot be excluded, either.

The majority of the carbon-14 tracks was fully contained in the emulsion. 
When calcium-45 and chlorine-36 were used, increasing proportions (c. 
25°/0 for Ca and a still higher, but not determined proportion for Cl) of the 
tracks left the upper and lower surfaces of the emulsion, and a similar in
crease was noted in the number of tracks re-entering the emulsion from the 
lower surface due to backscatter from the glass slide.

Most of the sandwich slides showed an artefact: shortly after processing 
of the emulsion, small brownish grains became visible throughout the 
emulsion. They were definitely smaller than the blackened grains of the 
tracks. In the course of a few days, these brownish grains were slowly re
placed by large translucent crystals. Beta tracks could often be followed 
very close to such crystals without noticeable variation in grain size or 
-density. The nature of this artefact remained obscure. Since neither the 
visibility nor the grain yield of the tracks was affected, plates showing this 
artefact were used for counting.

Ill, 2) Track length and number of grains per track as functions 
of particle energy

One of the main problems of the present studies was to establish the 
relationship between beta particle energy and the number of grains pro
duced in the emulsion. However, when using sources emitting a continuous 
beta spectrum, the initial energy of the particle giving rise to any particular 
track cannot be specified. Instead, the theoretical “range-energy relation” 
can be applied (cf. pp. 11 and 32). Zajac and Ross, 1949, found good 
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correlation between calculated and experimentally determined track lengths 
when using monoenergetic beta particles and a Kodak NT-4 emulsion. 
Demers, 1958, has calculated the corresponding values for Ilford G-5 
emulsion. As might be expected, the two sets of values are practically identical.

An attempt was therefore made towards an indirect determination of 
the relation between particle energy and number of grains per track by 
establishing experimentally the ratio between track length and number of 
grains per track in Ilford G-5 emulsion. On the basis of the theory linking 
track length and particle energy, it becomes possible to arrive at the desired 
ratio between the energy of the particle and the number of grains it is likely 
to produce.

To this end, sandwich slides containing C-14, Ca-45, and Cl-36, re
spectively, were used and tracks were selected for counting, applying the 
following criteria (group A, cf. p. 31).

a) The complete track must be contained in the emulsion, i. e. both the 
beginning and the end of the track must be located at some distance 
from the surface of the emulsion layer.

b) Tracks were selected which ran predominantly parallel to the plane of 
the glass slide.

c) Tracks were given preference which did not pass other tracks at very 
close distance so that confusion could arise.

d) Very tortuous tracks were avoided.

Grain counts were carried out on a total of 101 tracks, namely 30 tracks 
of C-14, 30 tracks of Ca-45, and 41 tracks of Cl-36. Each track was divided 
into sections as described on p. 15, the length of each section and the num
ber of grains in it were recorded. The presence of delta tracks was also 
noted down, and their length and grain count recorded.

The mathematical evaluation of the results is dealt with in a separate 
chapter (Chapter V.). Summarising the findings, it can be stated that

1) it is justifiable to regard the tracks studied in slides containing C-14, 
Ca-45, or Cl-36 as one uniform population of tracks;

2) the grain count in, say, the terminal 25 microns of a long track is the 
same as that of a track whose total length is 25 microns (cf. p. 38);

3) a simple relationship between the mean number of grains per track and 
the track length has been found, and the same relationship holds for 
Zajac and Ross’ determinations;

4) the standard deviation of the present measurements is of the same order 
of magnitude as that found by Zajac and Ross.

Mat.Fys. Medd.Dan.Vid.Selsk. 33, no. 11. 2
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These observations are illustrated by Fig. 1 which shows a direct plot 
of the number of grains per track versus track length.

Using the ligures for track length obtained in this series of measurements, 
the presumed initial energy of each of the beta particles studied was found 
from the tables given by Demers. The results obtained are plotted in Fig. 2 
which shows the number of grains per track versus the calculated particle 
energy. Both the tracks analysed in the present study and those reported 
by Zajac and Boss are plotted in the figure. The particles studied had 
energies between 20 and 390 keV. Where a della track occurred, it was 
treated as a separate beta particle, in order to estimate its initial energy. 
The parent particle was assumed to have lost this energy and to have created 
the corresponding number of grains at the point of origin of the delta track.

The numerical treatment of these problems is likewise described in 
chapter V.

111,3)  The energy spectrum of C-14 betas in terms of grains per track

The energy spectrum of C-14 depicted in Fig. 3 rises to a low peak at 
about 25 keV and then falls to the maximum energy of 155 keV.
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Fig. 2. Number of grains per track vs. presumed initial particle energy.

When calculating the distribution of the number of grains per track on 
the basis of the energy spectrum, it must be taken into account, however, 
that we are not dealing with a functional relationship but with a distribution 
of the number of grains per track for any given energy. On theoretical 
grounds (Bohr’s equation) a considerable straggling in ranges and grain 
counts can be expected for a group of monoenergetic beta particles. Zajac 
and Boss (1949) found a standard deviation of about 20 °/0 of the mean in 
their measurements of track length and their grain counts. If the distribution 
curve for the number of grains per track is corrected, assuming that each 
initial energy value will result in a population of grain counts, with a Poisson 
type distribution about the mean, a curve is obtained which is shown in 
Fig. 3 together with the energy spectrum. A detailed account of this calcul
ation is given in chapter V.

In order to establish experimentally the distribution of the number of 
grains per track, a large number of randomly selected tracks was analysed 
on C-14 sandwich slides and on plates containing C-14 labelled yeast cells. 
Fhe fields to be scanned under the microscope were chosen by pre
determined settings of the mechanical stage (cf. Levi and Nielsen, 1959).

2*
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0 10 20 30 40 50 60 70 80 Grains/Track
hig. 3. Energy spectrum of C-14 and calculated distribution of grains per emission.

The following method of choosing tracks to be analysed in these fields of the 
sandwich plates was adopted (Group B p. 32). (1) All beta tracks lying in the 
chosen fields, whether complete or leaving the emulsion, were registered and 
the number of grains was counted. (2) Whenever tracks crossed the boundaries 
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of the chosen field, an attempt was made to decide whether the track origin 
or its termination lay within the field. Only the tracks whose origin was within 
the field were included in the counts.

21 fields were scanned, and 191 beta tracks analysed, of which 163 
were completely contained within the emulsion while 28 tracks left the 
emulsion at either top or bottom.

In order to assess the contribution of background electron tracks to this 
total, and to estimate their energy distribution, 58 fields were scanned on 
a blank sandwich plate. 90 background tracks were observed, 53 of them 
completely contained within the emulsion.

The following criteria were adopted for selecting the tracks to be counted 
on the slides containing labelled yeast cells (Group E, p. 32).

(1) Only single yeast cells, or pairs of cells, in the emulsion were chosen; 
fragmented cells or cell clumps were omitted.

(2) Yeast cells lying within 20 /z of the top or the bottom surface of the 
emulsion were omitted.

(3) Yeast cells indicating the presence of a chemographic artefact were 
omitted1.

(4) Yeast cells giving rise to 10 or more tracks were excluded because the 
difficulty of interpreting the track pattern became too great.

1 The slides containing suspended yeast cells showed a chemographic artefact: Where the 
cells clumped together, a solid mass of silver often surrounded them. However, this mass was 
completely different in appearance from the discrete grains of the beta tracks. It has been sug
gested that ruptured cells might be responsible both for the clumping and the chemography. 
On the same plates, numerous individual cells and pairs of cells were present which were free 
from silver deposits, and clearly recognisable beta tracks originated from them. These cells 
were therefore used for counting.

The slide was placed in a predetermined position under the microscope, 
and moved along a straight line from side to side “east-west”. Every yeast 
cell satisfying the mentioned criteria was used for counting. Every beta 
track originating from the selected yeast cells was included.

A total of 304 beta tracks, originating from 88 yeast cells was analysed. 
Considering the frequency of background tracks previously determined on 
blanks, the probability of including a background track that might originate 
from the area covered by a selected cell was fell to be so slight as to be 
negligible.

Qualitatively, the results obtained on both types of plates are in good 
agreement. The observed distribution of the number of grains per track is 
depicted in Fig. 4.
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NUMBER OF GRAINS PER TRACK
Fig. 4. Observed distribution of the number of grains per track for C-14 (histogram) and cal
culated distribution (cf. Fig. 3). The first bar of the histogram has been condensed into the line 

at 4 grains per track.

It appears from Fig. 4 that the shape of the calculated distribution curve 
agrees fairly well with the observed distribution, although the number of 
short tracks is somewhat higher than expected.

Since only 4 or more grains in a row form a recognisable track, 14% 
of all C-14 beta particles (the sum of the first 4 ordinates) will not be re
cognised as tracks, and 4% will not give rise to any grains al all under 
the conditions of this experiment, as calculated on p. 45.
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III, 4) The energy distribution curve of Ca-45 betas in terms 
of grains per track

An attempt was also macle to count the number of grains per track in a 
Ca-45 sandwich plate, and to compare the values observed with the predicted 
distribution. The criteria for selecting the tracks and for assessing the con
tribution of random background tracks to the observed total were the same 
as described on p. 20.

Thirteen fields were scanned and 195 beta tracks analysed, of which 
136 were completely contained in the emulsion and 59 left the emulsion 
either at the upper or lower surface. As was to be expected, the statistical 
analysis of these figures was complicated by the higher proportion of tracks 
leaving the emulsion. Nevertheless, the agreement between the predicted 
and the observed distribution as illustrated by Figs. 5 and 6 is very close 
if the straggling effect (cf. above) is taken into consideration. 10°/0 of the 
Ca-45 beta particles must be expected to give rise to less than 4 grains 
under the conditions of this experiment.
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Fig. 6. Observed distribution of the number of grains per track for Ca-45 (histogram) and cal
culated distribution (cf. Fig. 5). The first bar of the histogram has been condensed into the 

line at 4 grains per track.

Ill, 5) The distribution of grains in space relative to the track origin

As discussed in the Introduction (p. 8) the simplest model to be studied 
with the aim of absolute quantitation must be a point source of a beta 
emitter surrounded by emulsion on all sides. The questions Io be answered 
are 1) how many grains (or tracks) are being produced in the emulsion by 
a given number of disintegrations, and 2) what is the radius of the sphere 
around the source in which all grains (or tracks) will be contained? There
fore, the distance between the origin of a track and the point furthest away 
is of the greatest interest.

Little information could be found in the literature on the relationship 
between the track length and the radius of the sphere that will contain 
the entire track. In order to investigate this problem, two types of measure
ments were carried out on sandwich slides containing C-14 and Ca-45. 
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While the counts reported on pp. 20 and 23 were in progress, the distance 
between the first grain of the track and the grain lying furthest away was 
measured on every complete beta track encountered. Such measurements 
were made on 163 tracks of the C-14 slides and on 136 tracks of the Ca-45 
slides.

The second type of measurement was performed on the C-14 plates, 
only (Croup I) p. 32). Tracks completely contained in the emulsion were 
divided into sections, each of which could be approximated by a straight 
line. The positions of the beginning and the end of each section relative 
to the first grain of the track were measured, and the number of grains in 
each section recorded. In this way,—and assuming fairly regular spacing 
of the grains within each section,—a three-dimensional picture of the po
sition of each grain in each track relative to the track origin (the first grain) 
was obtained. 100 C-14 tracks were measured in this way. From this second 
type of measurement, the radius of each track can likewise be determined.

The figures obtained for C-14 and Ca-45 were found to constitute a 
homogeneous population. The mathematical derivation of the function 
which links the number of grains per track to its radius in microns is given 
on p. 40 and the distribution of radii is given in Table VI. Using the equations 
derived in section V, 3 for the interdependence of track length, particle energy, 
and number of grains per track, an equation is obtained that relates track 
length with radius, as well as initial particle energy with radius. It follows, 
for instance (cf. p. 42) that a sphere of G-5 emulsion with a radius of 20 
microns around a point source of C-14 will contain 90°/o of the beta tracks 
originating from this source. The corresponding radius of a sphere around 
a point source of Ca-45 is 45 microns (cf. p. 43).

For C-14, additional information can be obtained from the second type 
of measurement mentioned above. If the origins of the tracks examined are 
superimposed, a three-dimensional picture of the distribution in space of 
silver grains around this model point source can be constructed. Fig. 7 
illustrates this distribution graphically. It follows that, for a point source 
of C-14 completely surrounded by G-5 emulsion, 29°/0 of the grains pro
duced will lie within 5 microns of the source, 50°/o within 9 microns, 75°/0 
within 17 microns and 9O°/o within 25 microns. The second curve given on 
Fig. 7 is discussed on p. 45.
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Fig. 7. Distribution in space, and in the plane of the slide, of silver grains around a model point 
source of C-14.

Chapter IV
Sources of error

The conclusions to be drawn from the experiments described in the 
preceding chapters rest entirely on the measurements of distances between 
points in the emulsion, and on grain counts. Some of the sources of error 
affecting these results are inherent in the processing and re-swelling of 
the emulsion and the resulting recognisability of detail. Others lie in the 
optical length and depth measurements, as well as in the criteria used for 
selecting the tracks to be studied. A critical discussion of these factors is 
therefore presented in the following sections.
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IV. 1) Processing

As discussed earlier, (p. 10) processing conditions have a considerable 
influence on grain- and track yield. In particular, it was found desirable 
to investigate the effect of over- or underdevelopment, and to find the op
timal development time for the plates prepared in the present study. A 
separate experiment was therefore carried out using a series of sandwich 
slides containing Ca-45. The plates were processed as described on p. 13, 
but the duration of the warm stage of development was varied between 
5 min and 40 min. The criteria for the selection of the tracks (Group C 
p. 32) to be analysed were similar to those mentioned on p. 17. In order to 
obtain the desired information, only tracks longer than 75 microns were 
chosen. Using these criteria, the number of grains in the terminal 75 microns 
of the selected tracks was counted.

After only 5 min development, it proved extremely difficult to find 
tracks of the desired length. The terminal 20-30 microns could often be 
identified, but grain spacing was so irregular that the course of the earlier 
part of the track could only be guessed. This difficulty was not encountered 
after 10 min development. With increasing development time, the grain 
size as well as the number of grains increased. After 20 min development, 
the large grains in the terminal few microns of the tracks tended to fuse 
into a solid line of silver, which made grain counting difficult in this por
tion of the tracks. The random grain background was considerably higher 
after 40 min development as compared with the shorter processing times.

Twelve tracks were analysed at each of the following development times: 
5, 10, 15, 20, 25, and 40 min.

The findings are illustrated in Fig. 8 where the grain counts in the ter
minal 75 microns of track are plotted against the development lime. The 
mean grain counts increased considerably between 5 and 10 min, and 
more slowly from 10 to 15 and 25 min of developing, remaining practically 
constant up to 40 min. The grain densities expressed as number of grains 
per 25 micron sections, measured from the termination of the track, showed 
a similar pattern for all sections up to 125 microns (cf. p. 38).

From these observations it follows that significant fluctuations in grain 
yield did not occur as a result of slight variations in development time 
between 15 and 40 min in the particular conditions of this experiment. 
Clearly, the length of the plateau shown in Fig. 8 would have been shorter, 
and its slope steeper, if a more powerful developer had been used, or the 
temperature of development had been higher. Under different conditions,
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Effect of increasing development time on grain count 
in terminal 75 microns of track.
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Fig. 8. Effect of increasing development time on grain count in terminal 75 microns of track.

the effect ol- development time might have been more critical. As mentioned 
in section 11,3, the development time used in the present work was 25 
minutes.

Zajac and Ross 
interpreting their 
was viewed with- 
as measurements 
emulsion. In this

IV, 2) Reswelling of the processed emulsion

During fixing, the emulsion layer shrinks considerably, and the grains 
become superimposed very closely in the optical axis of the microscope. 
When a steep dip of the track occurs, individual grains cannot be identified. 
Similarly, delta tracks originating at right angle to the surface of the slide 
may be missed entirely. In sections of the track that lie perpendicular to 
the surface of the slide, grain counts are very difficult. 
(1948, 1949) likewise encountered some difficulties in 
track patterns due to the fact that the processed emulsion 
out reswelling. Recognition and counting of grains as well 
of distances arc definitely much easier in the reswollen 
connection, it should be emphasized that the discrepancy between the 
number of grains per track for carbon-14 reported by Levi and Nielses 
(1959) and the results obtained in the present study is probably due to 
the different thicknesses of the processed plates. The material from which 
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the earlier results were derived was re-examined recently. Since the plates 
prepared by Levi and Nielsen had a higher track density, and the emulsion 
was viewed without reswelling, the track patterns were interpreted differently: 
whenever portions of a track lay at right angles to the plane of the slide, 
the heavily superimposed grains gave an appearance which was erroneously 
interpreted as the dense termination of a track; the continuation of a row 
of grains al a different focal level was assumed to represent the beginning 
of a new track. In this manner, long tracks were divided into a number 
of shorter ones. Undoubtedly, the figures presented in the present paper 
should be taken in preference to those of Levi and Nielsen.

IV, 3) Accuracy of track length measurements

a) When measuring track length, the irregular path of the beta particle 
was approximated by a series of straight lines. Even in the case of high 
energy beta particles, producing tracks which appear fairly straight over 
long distances, multiple scattering occurs between one grain and the next, 
and hence, the distance travelled by the particle is always greater than the 
distance measured between the end points of a fairly straight section. Zajac 
and Ross worked with the oil immersion objective of a Vickers projection 
microscope, and measured the distance from one grain to the next. This 
very time consuming method should lead to more accurate results; how
ever, the results obtained by Zajac and Ross agree so closely with those 
reported in the present paper, that the simpler method of length measurement 
applied in the present study seems justified.

b) Since beta tracks originate from sources of molecular dimensions, 
the true point of origin of each track cannot be determined. It was there
fore tentatively assumed that the tracks start from the first recognisable 
grain. In tracks of a total length of about 50 microns, the grains in the first 
section of the track were approximately 1 micron apart. In tracks 150 
microns long, or more, the first grains lay about 2 microns apart. The total 
track lengths as stated in the present work have therefore been underestimated 
by not more than 1 or 2 microns, depending on the total length.

c) An estimate of the reproducibility of the measurements in the optical 
axis of the microscope was obtained in connection with the study of the 
spatial distribution of grains relative to the track origin. Since it must be 
assumed that beta particles travel randomly in all directions, the distribution 
of silver grains around a point source should be spherically symmetrical.

As described on p. 25, the spatial distribution of silver grains recorded 
for a large number of randomly selected C-14 tracks was evaluated. When
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Fig. 9. Distribution of grains about the point of origin of the tracks.

the track origins of all tracks analysed were superimposed, the pattern of 
grains recorded was found to be symmetrical about the origin with respect 
to measurements taken in the plane of the slide. The distance measurements 
in the optical axis of the microscope were more variable, with a greater 
proportion of zero distances than were observed in the plane of the slide. 
Fig. 9 may serve to illustrate the distribution of grains about the point of 
origin of the tracks as being spherically symmetrical, if the very short 
distances of less than 1 micron which seem to have been recorded as zero, 
are excluded. This confirms the statement that reswelling restored the pro
cessed emulsion very closely to its original thickness.

IV, 4) The accuracy of grain counting

The only appreciable source of error in grain counting lies in the eval
uation of the last few microns of the tracks, where the grains can be so 
large and closely spaced that the silver appears as a rather uneven blob, 
instead of a group of discrete grains. Since the chances for a short della 
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track to occur near the termination of the track are likewise high, the number 
of grains may be underestimated. This error is likely to be consistent for 
each observer.

IV, 5) The selection of tracks to be analysed

The criteria for selecting tracks to be analysed, out of the practically 
infinite population of tracks available on each plate, have been stated in 
the previous chapters. However, some comments are needed if the possi
bility of a bias is to be evaluated. When the relationship between track 
length and number of grains per track was studied, very tortuous tracks, 
and tracks running predominantly in the optical axis of the microscope 
were avoided. Thereby, length measurements and grain counts were greatly 
simplified, but other errors may have been introduced.

A beta particle loses most of its energy in multiple scattering whereby 
a succession of small deviations from its course occur. In addition, abrupt 
loss of a considerable amount of energy will occur resulting in the formation 
of a delta track whose length can be measured, provided the delta track lies 
predominantly in the plane of the slide. If the abrupt loss of energy is due 
to a nuclear collision, however, the track will show a marked change of 
direction at the point of collision, but the energy loss cannot be estimated 
by examining the emulsion. In selecting tracks according to the criteria 
mentioned above, it is likely that tracks with relatively few abrupt changes 
in direction were chosen at the expense of those with more delta tracks 
and more frequent nuclear collisions.

The data thus obtained were used to derive the equation relating initial 
energy of the particle to the number of grains produced; the resulting equa
tion may describe a situation in which a higher proportion of the particle 
energy is dissipated by multiple scattering than is normally the case.

Chapter V
The mathematical evaluation of results

V, 1) Groupings

Five series of measurements were carried out in the course of this in
vestigation and, for convenience, they will be referred to in the manner 
given below.

Group A Selected beta tracks from C-14, Ca-45, and Cl-36 were divided 
into segments, and the length of each segment as well as the number of 
grains in it were recorded (cf. p. 17).
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Group B Using C-14 plates, Ca-45 plates, and blank plates, randomly 
selected beta tracks were examined, and both the radins of each track and 
the number ol' grains in the track were recorded (p. 20). For each track, 
a note was made of whether it was completely contained in the emulsion 
or whether it passed through the top or bottom surface of the emulsion.

Group G A series of Ca-45 plates that had been developed for periods 
ranging from 5 minutes to 40 minutes was examined (p. 27). Selected beta 
tracks were divided into segments and the length of each segment, as well 
as the number of grains in it were recorded.

Group 1) Randomly selected C-14 tracks were studied (p. 25). Each 
track was divided into segments and the co-ordinates of the beginning and 
the end of each segment in three dimensions relative to the track origin 
(first grain) were recorded, as well as the number of grains in each segment.

Group E The C-14 beta tracks originating from selected yeast cells were 
examined (p. 21). The number of tracks per cell and the number of grains 
per track were recorded.

V, 2) The relation between track length, number of grains,
and initial energy of the particles

Zajac and Ross (1949) determined the mean track length and the mean 
grain count for 9 groups of mono-energetic beta particles in Kodak NT 4 
emulsion. Tables II and III summarize some of their findings.

Table II
Zajac and Ross’ values for mean track length and mean grain count 

(loc. cit., 1949, table 1).

Particle energy 
keV

Mean track 
length (/p

Mean grain 
count

E L G
30 7.0 11.0
40 10.8 13.8
50 15.8 20.4
60 21.4 22.4
80 32.7 35.5

100 46.7 43.3
147 95.4 74.2
200 141 95
250 201 133
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Table III
Zajac and Ross’ values of mean number of grains per micron (<ÿ) 

at given distance (E) from termination of track 
(loc. cit., 1949, table 2).

L g L g

2.5 1.49 70 0.584
7.5 1.11 90 0.593

12.5 0.93 110 0.545
17.5 0.90 130 0.540
25 0.761 150 0.501
35 0.766 170 0.515
45 0.680 190 0.495
55 0.700

In Fig. 10 the logarithm of the initial energy of the particles in keV (logE) 
is plotted against the logarithm of the mean track length in microns (log E). 
The evidently linear relationship between log E and log E can be described 
by the equation

log L= 1.59 log E — 1.51 (1)

In the same figure, log E is plotted versa the logarithm of the mean number 
of grains per track (log G) and this relation is described by the equation

log G = 1.1 9 log E-0.740 . (2)

From equations (1) and (2), the functions linking track length and number 
of grains can be derived, viz.

log G = 0.747 log Ë +0.385
or

G = Ë°-747 IO0-385 = 2.43 Ë0-747

The percentage standard deviation reported by Zajac and Ross is fairly 
constant; the coefficient of variation being approximately 2O°/o for the track 
lengths and slightly lower for the grain counts. However, the coefficients of 
variation for the grain counts are not incompatible with those predicted by 

Mat. Fys. Medd. Dan.Vid. Selsk. 33, no. 11. 3

(3)

(4)
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Fig. 10. Zajac and Ross’ values for mean track length and mean grain count as a function of 

initial energy of the particles (log-log scale). These values are listed in Table II.

the Poisson distribution, except for lite higher energy groups, where the 
experimentally determined coefficients are higher than those from the Pois
son distribution.

In view of the similarity in composition between Ilford G 5 and Kodak 
NT 4 emulsion, the relation between particle energy and track length is 
expected to be the same in the two emulsions. In fact, Zajac and Ross’ 
figures for mean track length agree very Avell with those predicted on theo
retical grounds for both emulsions.

From the group A measurements (cf. p. 31), track length and number 
of grains per track have been determined, but the initial energies of the 
particles cannot be stated. Fig. 11 shows the number of grains per track 
plotted against L0,747, and, in addition, the energies corresponding to different 
values of L (equation 1) are plotted on the abscissae. It can be seen that the
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Fig. 11. Number of grains per track versus £0,747 and versus initial energy of the particle 
(cf. equations (2) and (4), section V, 2; Group A).

results obtained for C-14, Ca-45, and Cl-36 tracks form a homogeneous 
group. The 95% confidence limits calculated on the assumption of a Poisson 
distribution with a mean of 2.43 L0-747 are shown on the graph. All points 
observed lie within these limits, which indicates a close agreement with 
equation (4). Furthermore, the experimental variance of the results is of 
the same order as that found by Zajac and Ross, or even slightly lower.

In Fig. 12, the number of grains per track versus track length of 100 
randomly selected C-14 tracks of group 1) are plotted in a log-log scale. 
The straight line corresponding to equation (4) is drawn up in full, and 
it can be seen that this line does not agree too well with the observed points, 
while the dashed line which has almost the same slope but is placed some
what below the first mentioned line on the average fits the observed points 
much better. In addition, it will be noted that the scatter of the points around 
the straight line is clearly greater for group I) tracks as compared with 
tracks of group A (cf. Fig. 11).

3*
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Fig. 12. Number of grains per track versus track length of 100 randomly selected C-14 tracks 
(Group D; log-log scale).

The difference in the results obtained front these two groups of tracks 
is undoubtedly due to the fact that the group A tracks have been selected 
so as to be easily recognisable and not very tortuous (cf. p. 17) whereby a 
lower scatter of the results was obtained. Furthermore, it is reasonable Io 
assume that the difficulties encountered when evaluating the number of 
grains in sections of track running perpendicular to the plane of the glass 
slide led to an underestimate of the number of grains per track in group 7). 
The scatter of the points of group 1) tracks agrees well with the expected 
Poisson distribution, while that of group A is lower than expected.

Since a beta particle with the initial energy 7<0 loses energy on its pas
sage through the emulsion, its energy at a given point in the track will be 
reduced to, say, Ex. Il seems reasonable to assume that the length of the
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Fig. 13. Zajac and Ross’ values of grain density versus track length (log-log scale). These values 
are listed in Table III.

remaining portion of the track, and the number of grains in that portion, 
will depend on Er in exactly the same manner as for another track produced 
by a particle with the initial energy Ev In other words, the terminal section 
of any track will be independent of the initial energy of the particle and, 
on the average, independent of whether the complete track is long or short.

On this assumption, the average grain density g at a distance L from 
the termination of the track can be determined by differentiation of equation 
(4). This leads to

g = ~ = 2.43 x 0.747 A“0-253 or (5a)
dL

log g = 0.259 - 0.253 log L . (5b)

In Fig. 13, Zajac and Ross’ values are plotted with log g as the ordinates 
and log L as abscissae. There is very good agreement between these observed 
values and the straight line calculated on the basis of equation (5 b).
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Table IV
Mean number of grains per 25 microns of track 

(distance measured from termination).

Distance
from end

Number of tracks Mean number of grains.

Th
eo

ry
 

(E
qu

. 4) Variance

C-14 Ca-45 Cl-36 C-14 Ca-45 Cl-36 total C-14 Ca-45 Cl-36 total

0- 25.... 17 19 33 26.0 26.2 25.5 25.8 26.9 7.2 11.5 35.8 21.6
25— 50.... 6 10 30 17.7 20.1 18.4 18.7 18.3 9.0 10.9 14.5 13.4
50- 75.... 2 8 28 16.6 18.9 16.9 17.2 16.0 2.0 4.2 13.3 10.8
75-100.... 8 24 15.4 15.2 15.3 14.7 7.1 9.2 8.4

100-125.... 4 18 14.7 14.5 14.5 13.7 3.9 7.7 6.8
125-150.... 14 14.5 14.5 13.1 8.0 8.0
150-175.... 9 12.2 12.2 12.5 7.1 7.1
175-200.... 7 12.5 12.5 12.1 4.9 4.9
200-225.... 7 12.7 12.7 11.7 2.9 2.9
225-250.... 7 12.6 12.6 11.4 4.0 4.0

Tables IV and V give the results obtained from group A tracks. The 
straight segments into which these tracks originally were divided for the 
purpose of measurements, were of variable length. For convenience of 
comparison, and in agreement with the considerations outlined above, the 
tracks listed in tables IV and V have been divided into sections 25 microns 
long, starting at the termination of the tracks. The number of grains in 
each such section has been calculated. Table IV records the mean number

Table V
Mean number of grains per 25 microns acc. to total length 

of track and distance from end.

Distance from end of track
. , , ,,

of track 0-25 fi 25—50 fi 50-75 /i

number mean no. number mean no. nu mber mean no.
of tracks of grains of tracks of grains of tracks of grains

25- 50............................ 13 25.8
50- 75............................ 14 26.4 14 18.3
75-150............................ 19 24.1 18 20.1 18 16.2

150-250............................ 14 28.0 11 17.5 11 17.8
250- ............................ 9 25.3 9 18.2 9 16.0



Nr. 11 39

of grains found in 25 /z sections of track for beta particles from each of 
the three isotopes studied. In table V, the mean grain numbers in the three 
25 micron sections nearest the termination are listed for tracks of different 
total length.

It appears from these tables that the grain density, viz. the mean number 
of grains per 25 micron section of track, is independent of the isotope and 
of the total track length. Moreover, it can be seen that these values are in 
close agreement with equation (4) (column 9 of Table IV). The grain 
density decreases from the termination of the track towards its origin, 
reaching a reasonably constant figure above 150 microns from the termin
ation. The variance of grain density decreases according to a similar pattern. 
The high variance found in the terminal 25 microns of track probably re
flects in part the great variability in track pattern found in this region, and 
the increasing difficulty of grain counting when the grains lie very close 
together.

When delta tracks occur, the relation between total number of grains 
and total track length cannot be described by equation (4), since both 
branches represent track terminations. If delta tracks were to be compared 
with unbranched tracks, one of the branches should be interpreted as a 
middle section of an unbranched track, and this would involve a different 
relation between length, number of grains, and energy. A correction could 
be applied in such cases, but since this correction would be based on an 
assumption we have set out to prove, it was considered preferable to omit 
branching tracks from Fig. 11. However, the longest branch of each of 
these tracks is included in the calculation of grain density listed in tables 
IV and V.

V, 3) The relation between track length, radius, and distribution 
of grains in space

Direct measurements of the radius and the number of grains per track 
are available from group B for C-14 and Ca-45, and from group J) for 
C-14. These figures are useful, only, if the tracks are fully contained in the 
emulsion.

For group D, it was possible to calculate track length as well as radius. 
These results are plotted in Fig. 14. In the narrow range from c. 20 keV 
to 150 keV, the relationship between track length and radius can be ex
pressed as

log R = 0.816 log L + 0.042. (6)
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Fig. 14. Track length versus radius for C-14 (Group D; log-log scale).

It can be seen that ihe points scatter considerably about (he mean. 
Using the relation between log G and log L derived from the dashed line 
in Fig. 12, viz.

log G = 0.279 + 0.774 log L , (7)

the following relation between log G and log B is found

log G = 0.229 + 0.949 log Z? . (8)

Figs. 15, 16, and 17 illustrate that this relation fits the C-14 tracks of groups 
B and D and also the Ca-45 tracks of group B. Also here, the scatter of the 
points about the mean is fairly wide.
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Fig. 15. Number of grains per track versus radius for C-14, (Group B, log-log scale).

Since the equations linking the presumed initial energy of a beta par
ticle with its mean track length and mean number of grains have been cal
culated already, it is possible to apply these equations in order to convert 
equations (6) and (7) into a function describing the relationship between 
initial energy and mean radius

log E = 0.784 log R + 0.967. (9)

It must be emphasized, however, that this relationship holds in a very 
limited range of energies, only (about 20-200 keV). Moreover, the variance 
of this particular function has not been estimated, and it is likely to be 
very large. In the absence of any information concerning the shape and 
width of the distribution curve about the mean radius for a group of mono-
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Fig. 16. Number of grains per track versus radius for C-14, (Group D, log-log scale).

energetic electrons, it is impossible to predict the probability of finding a 
C-14 track with a radios greater than a given value.

The data available for C-14 in the measurements of groups B and 1), 
however, comprise 263 randomly selected tracks. Corrected for particles 
that have given rise to less than 4 grains (cf. p. 22), this represents 306 
disintegrations.

It seems reasonable to assume that all disintegrations giving rise to less 
than 4 grains have radii shorter than 5 microns. Table VI gives the frequency 
distribution found for C-14 tracks of different radii. It follows that a sphere 
of emulsion of a radius of 20 microns around a point source of C-14 will 
contain about 9O°/o of the disintegrations.

The data available for Ca-45 are based on fewer tracks and the com
putation is complicated by the unknown fraction of tracks of group B that
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b'ig. 17. Number of grains per track versus radius for Ca-45 (Group B; log-log scale), 

left the emulsion. As a rough estimate, the sphere of emulsion that should 
contain 90% of the disintegrations originating from a point source of Ca-45 
would have a radius of 45 microns.

The basic data for calculating the spatial distribution of grains around 
a point source within the emulsion are available for 100 tracks of C-14 
only (group 77). These measurements were carried out in the following way: 
The cross in the eyepiece of the microscope was brought to coincide with 
the first grain of the track to be measured, thus forming the origin of a 
three-dimensional co-ordinate system. In order to ascertain that no syste
matic error was made in this system, the symmetry of tracks within the 
co-ordinate systems was checked using only the end points of all track 
segments.
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Table AT
Distribution of radii of randomly selected C-14 tracks. 

(Groups B and D, completely contained in the emulsion).

Radius in microns
Nr. of tracks with
4 grains or more °/0 of all tracks

% of expected nr. 
of disintegrations

0 - 5.0 ........................................ 71 27.0 37.1
5.1-10.0 ........................................ 76 28.9 24.8

10.1-15.0 ........................................ 55 20.!» 18.0
15.1-20.0 ........................................ 25 9.5 8.2
20.1-25.0 ........................................ 14 5.3 4.6
25.1-30.0 ........................................ 10 3.8 3.3
30.1-35.0 ........................................ 6 2.3 2.0
35.1-40.0 ........................................ 2 0.8 0.7
40.1-45.0 ........................................ 1 0.4 0.3
45.1-50.0 ........................................ 2 0.8 0.7
50.1-55.0 ........................................ 0
55.1—60.0 ........................................ 0
60.1-65.0 ........................................ 1 0.4 0.3

Total. . . 263 100.1 100.0

Of 304 end points registered, 104 were situated west of the origin, 173 
east of the origin, and 17 just on the north-south axis. Although the difference 
between east and west seems rather large, it must be assumed that this is 
a chance occurrence. 148 end points were situated south and 131 north of 
the origin, while 25 were on the east-west axis. Finally, 138 were above 
and 108 below in the direction of the optical axis of the microscope, and 
58 were in the plane of the origin. The distribution of distances in the three 
dimensions—however omitting the sign—is depicted in Fig. 9. Apart from 
the slightly higher uncertainty in the optical axis of the microscope, the 
differences are insignificant.

From the co-ordinates of the end points of the segments, the co-ordinates 
of each of the 1968 grains in these tracks have been calculated in approx
imation. It has been assumed that the distances between the grains in a 
segment are equal. Moreover, the distance in space of each grain from the 
origin, i. c. the first grain of the track, as well as the corresponding projected 
distance in the plane of the glass slide have been calculated.

If the origins of these tracks are superimposed, a model point source 
of C-14 will result, and the observed distribution of grains around it may 
be studied.
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Since only tracks with 4 or more grains have been registered, a correc
tion must be applied for the tracks with less than 4 grains. According to 
the calculations described on pp. 22 and 46, 14 °/0of all C-14 trackswill have 
3 grains or less, and the calculated distribution of tracks according to their 
number of grains has been taken into consideration. On this basis, it can be esti
mated that 22 grains have been missed in the above total, and these grains 
are assumed to lie within a distance of 5 microns or less from the first grain.

The distribution of grains in space according to the distance from the 
first grain is shown in Fig. 7. 5O°/o of all grains lie less than 9 microns, and 
9O°/o less than 24 microns from the first grain. The figure also illustrates 
the distribution of grains according to the projected distance from the first 
grain in the plane of the glass slide. Here, however, only those grains are 
included which lie less than 5 microns from the first grain in the optical 
axis of the microscope. When viewed in this manner, 50°/o of the grains 
lie less than 5 microns and 9O°/o less than 15 microns from the first grain.

The distribution of the distances from the first grain will be very similar 
to the distribution from the source. For C-14, the mean grain density does 
not fall below 15 grains per 25 microns at the origin of the longest tracks. 
It is unlikely, therefore, that the true track origin lay further than 1.5 microns 
from the first grain, and in many cases it is probably only 1 micron away.

V, 4) The calculation of the distribution of the number of grains per track 
from the energy spectrum of a beta emitter

In order to deduce a distribution curve for the number of grains per 
track from the energy spectrum of a pure beta emitter, two assumptions 
have been made, viz. 1) that the mean number of grains per track for a 
group of monoenergetic beta particles is given by equation (2) (cf. p. 33)

log G = 1.19 log E-0.74

and 2) that the scatter of the number of grains per beta particle about the 
mean follows a Poisson distribution.

The energy spectra used in the present study were calculated from the 
theoretical nomograms of Marshall (1955).

The calculation of the distribution curve proceeded as follows: A large 
number of equally spaced energy levels was chosen for which the desired 
distribution of the number of grains per track was calculated (Table ATI 
column 1). These energy levels were 5 keV apart from 2.5 keV and up to 
152.5 keV in the case of C-14, and up to 247.5 keV in the case of Ca-45. 
From the known energy spectrum, the probability of emission of a beta
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col. 1 col. 2 col. 3 col. 4
Taikev P-p(e) P(fl,e)

0 1 2 3 4 5 6 7 8

2.5 3.3 0.5 .6065 .3033 .0758 .0126 .0016 .0002
7.5 3.5 2.0 .1353 .2707 .2707 .1804 .0902 .0361 .0120 .0034 .00

12.5 3.7 3.6 .0273 .0984 .1771 .2125 .1912 .1377 .0826 .0425 .01
17.5 3.8 5.4 .0045 .0244 .0659 .1185 .1600 .1728 .1555 .1200 .08
22.5 3.9 7.5 .0006 .0041 .0156 .0389 .0729 .1094 .1367 .1465 .13
27.5 3.8 9.3 .0001 .0009 .0040 .0123 .0285 .0530 .0822 .1091 .12
32.5 3.8 11.4 .0001 .0007 .0028 .0079 .0180 .0341 .0556 .07
37.5 3.7 13.6 .0001 .0005 .0018 .0048 .0109 .0212 .03
42.5 3.6 16 .0001 .0003 .0010 .0026 .0060 .01
47.5 3.5 18 .0001 .0002 .0007 .0019 .00
52.5 3.4 20 .0001 .0002 .0005 .00
57.5 3.2 22 .0001 .00
62.5 3.0 25 .00
67.5 2.8 28
72.5 2.5 30
77.5 2.3 33
82.5 2.1 35
87.5 1.9 38
92.5 1.7 40
97.5 1.6 43

102.5 1.4 45
107.5 1.2 48
112.5 1.1 51
117.5 0.9 54
122.5 0.8 56
127.5 0.6 59
132.5 0.5 62
137.5 0.3 65
142.5 0.2 68
147.5 0.1 71
152.5 0.0 73
P (fl) ■ * = Tp(e)-p(fl e)-k 2.596 2.425 2.182 2.121 2.067 2.012 1.966 1.931 1.89

P(fl) in °/o 3.81 3.56 3.20 3.11 3.03 2.95 2.88 2.83 2.78

P(fl) in »
13.68

3.51 3.42 3.34 3.28 3.22
0.1368 0

particle at each of the chosen energy levels (p (e)) (column 2) was calculated 
(cf. Marshall, loc. cit.). From equation (2), the mean grain number (zn(f/)) 
corresponding to each energy level was found (column 3). In the case of 
C-14, these mean grain numbers lay between 0.5 and 73 grains per track, 
in the case of Ca-45, between 0.5 and 128 grains per track.
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0 13 15
1

20 25 30 40 50 60 70 80 90
grain

100 
levels

328 .0001
262 .0024 .0003
858 .0211 .0057 .0001
219 .0572 .0235 .0009
144 .0987 .0611 .0063 .0002
740 .1085 .0955 .0239 .0017 .0001
341 .0814 .0992 .0559 .0092 .0006
150 .0509 .0786 .0798 .0237 .0026
058 .0271 .0516 .0888 .0446 .0083
020 .0127 .0292 .0809 .0654 .0197 .0002
004 .0033 .0099 .0519 .0795 .0454 .0014
001 .0007 .0027 .0249 .0673 .0677 .0065 .0001

.0002 .0010 .0134 .0511 .0726 .0139 .0002
.0002 .0045 .0276 .0631 .0314 .0013
.0001 .0020 .0162 .0499 .0447 .0033

.0005 .0063 .0293 .0598 .0101 .0002

.0002 .0031 .0185 .0629 .0177 .0007
.0009 .0080 .0566 .0328 .0026
.0004 .0043 .0472 .0431 .0054 .0001
.0001 .0015 .0310 .0541 .0128 .0006

.0005 .0175 .0558 .0243 .0020

.0001 .0086 .0484 .0373 .0055 .0002

.0001 .0050 .0403 .0447 .0094 .0005
.0020 .0273 .0510 .0181 .0015
.0007 .0162 .0498 .0290 .0041 .0002
.0002 .0086 .0422 .0395 .0089 .0006
.0001 .0041 .0315 .0463 .0164 .0017 .0001

.0018 .0209 .0473 .0258 .0040 .0002

.0010 .0150 .0447 .0322 .0067 .0005
19 1.702 1.640 1.432 1.156 .969 .671 .403 .201 .067 .012 .001
7 2.50 2.40 2.10 1.70 1.42 .98 .59 .29 .10 .018 .001

9 2.89 2.79 2.43 1.96 1.65 1.14 .68 .34 .11 .020 .002

Subsequently, a series of grain levels was chosen (horizontal row 2) 
and for each value of (m(g)), the probabilities of occurrence of a track 
with the number of grains listed in row 2 were calculated from the standard 
tables of Poisson distributions. The figures thus obtained were multiplied 
by the corresponding values of (p(e)). The products p(g\e)xp(e) at each 
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grain level were summed (row 3 from bottom) to give the overall probability 
of a track containing that number of grains to occur.

This overall probability (/>(£/)) was then normalised to percentage values 
(row 2 from bottom), and the distribution curve constructed.

Since, according to definition, a track contains 4 grains or more, the 
percentage values of p(g) for 0,1,2, or 3 grains per track were subtracted 
from the total, and the remaining values of p(g) were adjusted to give 
100 °/0 (last row).

Fig. 4 shows the calculated distribution curve and the observed distrib
ution of the number of grains per track for C-14. The observed distribution 
was obtained by pooling the results of groups 13, D, and E, and it agrees 
fairly well with the predicted curve. However, the observed distribution 
shows a preponderance of short tracks, a discrepancy which cannot be 
explained at present. If assumption (2) mentioned above is not correct, 
this might account for the difference between observed and calculated values 
in the beginning of the curve; it is conceivable, for instance, that the scatter 
of the number of grains per beta particle about the mean has a skewed 
distribution. It is also possible that, for low energies, the distribution about 
the mean is wider than that given by a Poisson distribution. Both these 
factors would tend to increase the probability of occurrence of tracks with 
few grains.

The predicted and observed distributions for Ca-45 are depicted in 
Fig. 6. Here, the situation is complicated due to the fact that a larger fraction 
of the tracks escaped from the emulsion. Still, over a major part of the 
energy spectrum, agreement between the calculated and the observed grain 
distribution is good.

Chapter VI
Summary

Beta tracks produced by carbon-14, calcium-45, and chlorine-36 in 
Ilford G-5 emulsion were studied in order to establish the possibility for 
accurate evaluation of track- or grain autoradiograms.

From measurements of track length and of the number of grains in the 
track, equations relating the initial energy of the beta particle to the mean 
number of grains produced have been derived. On the basis of these re
lationships, it is possible to predict the pattern of distribution of tracks in 
terms of the number of grains they contain for any isotope with a known 
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beta spectrum. In this manner, the percentage of particles that will not 
produce recognisable tracks can be calculated in each case. Clearly, this 
fraction will be relatively insignificant for isotopes with a high maximum 
energy, such as P-32, but it becomes much greater for low energy beta 
emitters such as C-14 and S-35.

It was found that 14 % of all beta particles emitted by a point source 
of C-14 will give rise to less than 4 grains, and thus not produce a recognis
able track. 4°/0 will not give rise to any grains at all under the conditions 
of the present experiments.

Hence, the absolute disintegration rate in a small beta source completely 
surrounded by Ilford G-5 emulsion can be determined with a considerable 
degree of accuracy, either by track counting or, if the track density is too 
high, by grain counting in a well-defined volume of emulsion.

Moreover, the position of silver grains relative to the track origin was 
measured. From these data, the distribution of grains in space around a 
point source can be constructed, and the radius of the sphere that will 
contain a given percentage of the grains can be calculated for any beta
emitter. In the case of C-14, 50% of all grains lie less than 9 microns, 
and 90 % less than 25 microns from the source. Viewing the projected 
distance from the first grain in the plane of the glass slide, and including 
only those grains which lie less than 5 // from the first grain in the optical 
axis of the microscope, 50 % of the grains lie less than 5 microns and 
90% less than 15 microns from the first grain. This resembles the con
ditions of a stripping film autoradiogram.

Discrepancies in the measurements of track length and grain number 
as found by Levi and Nielsen versus those found by Zajac and Ross, 
could be explained on technical grounds, and the values obtained by Zajac 
and Ross were confirmed in the present study.

The influence of development time on grain yield was investigated and 
the advantage of re-swelling of the processed emulsion prior to microscopic 
inspection was demonstrated.

On the basis of the results so far obtained, absolute quantitation in other 
geometrical arrangements of source and emulsion—such as the familiar 
tissue section covered by stripping film, or a cell smear coated with a thin 
layer of nuclear emulsion—is still not directly possible. It is feasible, how
ever, to calibrate small reference sources by track autoradiography, and 
subsequently to expose them in the conditions of the desired experiment, 
thus determining the grain yield and, from this, the disintegration rate in 
the source.
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In connection with the calculation of the spatial distribution of silver 
grains around a point source, the definition of autoradiographic resolution 
was found to be ambiguous and in need of revision. This problem will be 
dealt with in a separate communication in the near future.
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Synopsis
The infrared spectrum of CH3D has been measured in the region 400-6000 cm-1 

by means of a prism instrument (Beckman IB 3) of medium resolving power. The 
band-centre frequencies have been derived by rotational analysis of the fundamental 
bands. The results are compared with previous prism and grating data, and a 
slightly revised set of normal vibration frequencies is given.

A value of the rotational constant A"(A0) has been obtained, which agrees 
within the limits of error with a recent Raman value.

Coriolis coupling constants have been derived for the three doubly degene
rate fundamentals.

Possible assignments of the observed combination bands are given.
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I. Introduction

The infrared and Raman spectra of methane and its deuterated species, 
CH3I), CH2D2, CHD3, and CD4, have been the object of several investigations.1 
However, when one examines the literature, it is obvious that several of the 
fundamental frequencies of the partly deuterated methanes are uncertain. 
As the investigations cited above1 of these molecules are now more than 20 
years old and the experimental technique since then has improved con
siderably, a re-investigation of all the fundamental bands of the partly 
deuterated methanes appeared to be desirable.

In 1953 Boyd and Thompson2 and later Allen and Plyler3 (1959) have 
measured the band near 2200 cm-1 connected with the C-D stretching in 
CH3I) with high resolution. At the time when this investigation had been 
started, in 1956, Rea and Thompson4 published normal vibration frequencies 
of CH D3 obtained from infrared measurements. The assignments of two of the 
fundamental bands as well as the frequency value of one more fundamental 
are, however, in disagreement with infrared results of Wilmshurst and 
Bernstein5 (1957). The latter authors have published fundamental fre
quencies of all the deuterated methanes obtained with low resolution, the 
frequency values being the position of maximum intensity in the bands 
rather than the true band centre frequencies.

Recently Jones6 (1960) has published the results of an infrared study 
of the degenerate C-H stretching fundamental of CH3D at 3016 cm-1 using 
medium resolution (<*>  1 cur1). Only the central part and the high frequency 
side of the band were measured. Some of his band constants deviate some
what from the results of a recent Raman investigation of this band by Richard
son et al.7

The present paper will deal only with CH3I). Similar results obtained 
for CH2D2 and CHD3 will be given in separate papers.

1*
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II. Experimental
1. Preparations

CH3I) was prepared from CH3I by allowing the halogen compound lo 
react with a mixture of Zn-dust, acetic anhydride, and heavy waler (99.83 °/0 
D2O) at about 30° C. The methyl iodide was carefully distilled before use. 
The Zn-dust and acetic anhydride were of the highest purity commercially 
available. The acetic anhydride was carefully distilled and kept for a few 
days over metallic sodium in order to remove a small content of acetic acid.

The reaction was carried out by adding the methyl iodide dropwise to 
the mixture of Zn-dust, acetic anhydride, and D2O (vigorous reaction!). 
The CJI3I) evolved was collected in a gasometer and from there passed 
through a dry ice trap and then condensed in a liquid air trap. A volume 
of the gas first collected, equal to the volume of the reaction vessel, was 
rejected, as it would mainly consist of air. The CH3D was then distilled in 
nacuo to another liquid air trap. This procedure was repeated once more. 
In this way the deutero-methane was separated from less volatile impurities 
(e.g. H2O from the gasometer).

In a similar way CH2D2 and CHD3 can be prepared from respectively 
CH2I2 and CJICI3.

It follows from the method of preparation that the deutero-methanes will 
be contaminated bv some D2 and air. These contaminants were removed 
by successively pumping oil' small fractions of deutero-methane kept in a 
liquid air trap until an equilibrium pressure of 20-25 mm Ilg was obtained.

In each sample the only spectroscopically detectable impurity was the 
nearest lower deuterated methane, the amount of this, about 5 per cent., 
being spectrally of little significance, 'fable 1 gives the results from the pre
parations.

Table 1 . Results of preparations.

Deuterated 
compound

Mol halogen 
compound

Gram 
atom

Zn
Mol

(CH3CO)2O
Mol
1)2O

Yield 
Litre and 

°/o

CII31) ........... (».29 (CH3I) 1.26 (1.54 3.75 3.5 (50)
oh2d2......... <>.21 (CH2I2) 1.33 1.00 2.50 3.7 (73)
CHI).,........... 0.05 (CIII3) 0.21 0.13 3.10 0.36 (30)
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2. Spectroscopic Procedure

The spectra were taken on a slightly modified Beckman 1B3 infrared 
spectrometer equipped with KBr, NaCl, and LiF prisms.8 The path length 
could be varied from 10 to 2000 cm. The effective slit width, seff,9 is indicated 
al each spectrum reproduced below together with values of the gas pressure 
in mm Ilg (p) and the path length in cm (/).

fhe relative positions of the fine structure components within a single 
band are believed to be accurate within 10.1-0.2 cm-1. The absolute 
accuracy of the frequencies given is estimated at about ±0.5 cm”1. All the 
frequencies are in cm-1.

1. Parallel Bands (Ai Fundamentals)

l'he parallel bands corresponding to the vibrations v4a, v3a, and vi lie 
in the regions 1200-1400 cm”1, 2050-2300 cm”1, and 2900-3000 cm”1 with 
observed band centres at 1306, 2200, and 2970 cm”1, respectively. The J 
line structure of the P and R branches was easily resolved because of the 
high value of the rotational constant B" (^3.9 cm”1), the spacing in the 
branches being roughly 2B".

On the low frequency side, the v4a band at 1306 cm”1 is overlapped by 
the strong perpendicular band, v4bc, at 1157 cm-1, and on the high frequency 
side by the weak perpendicular band, v2ab, at 1471 cm”1. Furthermore, fine 
structure components from the strong band r4(P2) of CH4, the band centre 
of which nearly coincides with v4a of CH31), were present in the spectrum 
indicating a small content of CH4 in the CH3I) sample. However, because 
of the high intensity of the v4a band, assignment of P and R lines up to 
J = 11 could be made quite easily.

The 2200 cm”1 band (v3a) has been analyzed by Boyd and Thompson,2 
and recently by Allen and Plyler.3 The author’s measurements of the

III. Fundamental Bands

The molecule CH3D is a symmetric top belonging to the point group 6’3« 
and therefore has 6 normal vibrations: 3 totally symmetric of species Ai 
and 3 doubly degenerate of species E. They are all infrared active. The Ai 
vibrations give rise to parallel bands while the E vibrations appear in the 
spectrum as perpendicular bands.
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same band are in good agreement with their results in spite of the lower 
resolving power of the IK3 instrument. In this way a satisfactory check on 
the spectroscopic procedure used in the present investigation was obtained.

The high intensity of the nearby overtone 2v4bc (2x1 157 = 2314 cm-1) 
observed al 2316 cm-1 indicates a Fermi resonance between the Aj com
ponent of this overtone and v3a. I have estimated the unperturbed frequency 
of v3a at 2210±5cm-1.

Also (Figs. 1 and 4) appears in the spectrum as one of the components 
of a doublet caused by Fermi resonance with the Ax part of the overtone 
2vzab (2x1471 = 2942 cm-1). The components are observed at 2970 and 
2910 cm-1, Wilmsiiurst and Bernstein found 2973 and 2914 cm-1. If we 
assume that the anharmonicity of the overtone 2v2ab is - 10 cm-1—as seems 
reasonable-—then the unperturbed level vi has been raised 22 cm ', which 
means that the unperturbed frequency of vi is close to 2970 -22 = 2948 
cm-1. As the most probable value, vx = 2948 ±5 cm-1 has been adopted (see 
note added in proof, p. 34).

Since the observed band at 2970 cm-1 is of low intensity and badly over
lapped by the strong perpendicular band, v3bc, at 3016 cm-1, the assignment of 
the P and R lines is rather uncertain and must be regarded as tentative only.
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The analysis of the rotational structure has been carried out by means 
of the well-known “method of combination differences”. Neglecting the effect 
of centrifugal distortion, the P and R branches can be represented by

P(J)-v0-(B'+B")./ + (B'-B")./2 (1)
and

B(J) = r0 + 2 B' + (3 B'-B")J+(B'-B")J2. (2)

Double-primed quantities refer to the vibrational ground state, single-primed 
constants to vibrationally excited levels. The combination relations are:

R (J- 1) + F(.7) = 2 r0 + 2(B'-B") J2 (3)

Zl2F"(J) = 1)-P(J+ 1) = 4 B"(J+l/2) (4)
and

Zl2 F' (J) = R (J) -P(./) = 4B'(J + 1/2). (5)

If we take centrifugal distortion into account, Dj and I)j being the cen
trifugal distortion coefficients, the following relations hold:

R(J 1) + P(J)-2»O + 2(B'~ l)j)J2(J2+]) (6)

/12 B" (./) - 4 B" (./ + 1/2) - 8 l>j (./+ 1 /2)3 (7)
and

L /•- (J) - 4 B' (./ + 1/2) - 8 l>'j (J + I /2)3. (8)

Ehe difference between Dj and I)j can be ignored. Eq. (6) then becomes 
identical with Eq. (3). Eqs. (7) and (8) can be rewritten

^7Û-4B'-SD;(J+1/2)2 (9)

-jf'^ = 4B'-8//J(./+l/2)2. (10)

Graphical representation of Eqs. (3)—(5) and (9) and (10) give the band
centre frequencies v0, the rotational constants B" and B’, and the difference 
B'~B". The results are summarized in Table 2. Only for the v3a band, 
values (approximate) of Dj and I)'j could be obtained. For this band the 
results agree well with the results of the high resolution study by Allen 
and Plyler. The observed frequencies of the fine structure components have 
therefore been omitted. Observed frequencies and their interpretation for 
two of the bands (vx and v4a), together with calculated frequency values, are 
given in Tables 3 and 4. The agreement appears Io be satisfactory.
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fable 2. Band constants obtained lor parallel bands.

cm 1
,, * * 
» 3 a
cm-1

ha
cm 1

p * * * 2970.1 -10.5 2200.0 ±0.5 (2200.03)
- 0.040 ± 0.002 ( 0.0422)

3.875 ±0.005 (3.8800)
3.835 ±0.005 (3.837fi)
4.4x10~s (5xl0-s)
l.4xlO-5 (5.5xl0~5)

1306.5 ±0.5
/;' - b"....... - 0.02 ±0.02 - 0.088 L 0.002
B".................. 3.90 J 0.02 3.89 J 0.01
B'.....................
I)"r..................

3.92 ± 0.04 3.80 ±0.01

I)'J..................J

* High frequency component of a henni doublet. The unperturbed value of v1 is close to 
2948 cm-1 (see text).

** The values in brackets arc those obtained by Allen and Plyler3 (see text).
*** In Table 14 of this paper p„ values obtained by other investigators are compared to 

the author’s.

Effective slit width seff = 1.3-1.4 cm *.

Table 3. Observed and calculated fine structure lines of (A1) band.

/'(./) /?(./)

J Obs. 
cm-1

Calc, 
cm- 1

Zt
Calc.-obs. J Obs. 

cm 1
Calc.
cm-1

J
Calc.-obs.

0 2978.3 2977.9 -0.4
1 2962.1 2962.3 0.2 1 2985.7 2985.6 -0.1
2 2954,0 2954.5 0.5 2 2993.5 2993.3 - 0.2
3 2946,4 2946,6 0.2 3 3001.0 3000.9 -0.1
4 2938.5 2938.7 0.2 4 3009.0 3008.5 -0.5
5 2931.1 2930.7 0.4
6 2923.3 2922.7 -0.6
7 2914.0 2914.7 0.7
8 2906.7 2906.6 - 0.1

2. Perpendicular Bands (E Fundamentals)

The perpendicular bands arising from flic normal vibrations v2ab> p3bc>
and v4bc are, 
(Figs. 1,2, 3,

as already mentioned, observed at 1471, 3016, and 1157 cm 1 
4, and 5). The K fine structure was resolved for all three bands.

The average (J line spacings zlr2a& and Zb3()C were found to have approx
imately the numerical values 5.8 cm-1, respectively 1.9cm”1. Each of the 
spacings can be either ‘positive’ or ‘negative’. If the Q line spacing of a 
band is ‘negative’, it implies that the RQK ^nes occur on the lou> frequency
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Effective slit width seff = 1.8-2.4 cm-1.

Table 4. Observed and calculated fine structure lines of r4a(A1) band.

P(J) /?(J)

J Obs. 
cm-1

Calc. 
cm-1

A
Calc.-obs. J Obs. 

cm" 1
Calc.
cm-1

A
Calc.-obs.

1 1298.7
0
1

1313.7
1320.9

1314.1
1321.5

0.4
0.6

2 1290.2 1290.8 0.6 2 1328.0 1328.8 0.8
3 1282.3 1282.6 0.3 3 1335.8 1335.9 0.1
4 1274.4 1274.3 -0.1 4 1342.3 1342.8 0.5
5 1265.8 1265.9 0.1 5 1349.5 1349.5 0.0
6 1257.6 1257.2 - 0.4 6 1356.0 1356.1 0.1
7 1248.3 1248.4 0.1 7 1362.4 1362.4 0.0
8 1239.5 1239.4 -0.1 8 1368.6 1368.7 0.1
9 1230.0 1230.2 0.2 9 1374.6 1374.7 0.1

10 1220.8 1220.8 0.0 10 1380.7 1380.5 0.2
11 1211.1 1211.3 0.2 11 1386.5 1386.2 -0.3

side of the band centre. For v3bc the sign of the spacings can be established 
in the following way. Using the approximate formula for the Coriolis coupling 
coefficient given by Meal and Polo10

u (1 — cos a) IHyy
3ftc nie + (1 — cos a) /nyy’

we lind Ç3bc = 0.10. From the value of £3bc we can calculate an approximate va
lue for J v3ftc. The average spacing, A vt, in a perpendicular band corresponding 
to the vibration vt is equal to 2 [Af(l — £*)-#*].  Setting A'3bc—A" = 5.25 cm“1 
(see page 30) and B3bc — B" = 3.88 cm“1 (see Table 2), we obtain Av3bc = 
1.7 cm“1, which is close to the observed value. This shows that the sign of 
Av3bc is positive.

The question whether Av2ab is positive or negative is connected with the 
magnitude of the spacing in the third perpendicular band v4bc. To a good 
approximation the average () line spacings of the perpendicular bands will 
obey the sum rule11

^v2ab + Av3bc 1 ^^4bc~6A"- 7 4.34 cm“1,

where A" = 5.25 cm“1 and B" = 3.88 cm“1. From the relation it follows that 
at least one of the bands must have a ‘negative’ spacing, which means that

1 ~ B^/A'. — l — B"/A" = 0.26. Setting Zlv2a& = +5.8 cm“1 and =
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-I 1.9 cm 1 in the sum rule, one obtains zl v4bc = -3.4 cm“1, while dv2ab = 
-5.8cm"1 and dv3ftc= + 1.9cm“1 gives z1r40c = +8.2cm-1. For |zlr4bc| the 
value 3.4 cm-1 is found experimentally- Consequently, the spacings of the 
v2a& and v4ftc bands must be respectively ‘positive’ and ‘negative’.

This result is also supported by the observed relative intensities of the 
(J branches near the two band centres. As is the strongest of the Q lines, 
and PQ4 is stronger than /?Q4, the spacing in the V2ab band (see Fig. 2) should 
be positive. In the V4&c band (see Fig. 5) it follows from the same kind of 
argument that the spacing is negative.

The rotational analysis of the bands is based on the preceding discussion.
A characteristic feature of all three perpendicular bands is the strong 

central part caused by an agglomeration of the Q lines near the band centre, 
and the complicated fine structure, consisting of PQK, rQk> 1 an(^
RRk(J) lines and the much weaker PRK(J') and RPK(J} lines. The K num
bering of the Q lines was carried out in the usual way, and the observed 
frequencies are shown in Tables 8, 9, and 10. The assignments were to some 
extent complicated by the limited resolving power of the instrument and the 
overlapping by other bands.

On the high frequency side of the band v4bc some of the line structure 
lines are masked by the strong band al 1306 cm-1. The low frequency side 
of the weak band is overlapped by the absorption al 1306 cm“1. For 
this reason, only a few PQK lines and one Pl)K(J) line could be picked out 
of this band. On the other hand, the high frequency side of the band seems 
to be free from overlapping by other bands and has therefore been used 
for the evaluation of the band constants as discussed below. In the band 
v2bc there is an overlapping on the long wave side by the weak parallel band
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H

3000 3010 3020 3030 cm~1
Eig. 3. 3000-3030 cm b p = 65 mm. I = 10 cm. .seff = 1.4 cm

at 2970 cm-1. However, from the fine structure analysis band constants could 
be obtained which gave satisfactory agreement between calculated and 
observed frequencies.

The positions of the Q branches of a perpendicular band, neglecting 
centrifugal distortion, are given by

-2[4;(i-c()-b;]æ+[(^-a")-(b;-b")]æ2 j
and [>’0+a;(i-w2-b;]+(b;-b")j(j+i) |

+a [y (i -c.) - Bj i< + [(a; - a") -( b; - b")] a-2. |
Disregarding the difference between and B" the following combination 

relations can be obtained:

4.F"(J, K) - ttQK.1-t'QK+l - 4 [A"-A;C(-b"] K (13)

J2F' (J,K)-RQK-p(JK-A[A'(l-Çt)-B't]K (14)

RQk + PQk~ 2[». + X0 -C()2-«;i + 2 [(A;-A")-(B;-/C)]A’2. (15)

Plotting these expressions for the bands v^bc and V4bc, we obtain the values 
of the band constants given in Table 5.
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big. 4. and r, & (£). Upper curve: 2905-3010 cm 1. Lower curve: 3030-3125 cm
p = 152 mm. I = 10 cm. s = 1.3 1.5 cm“1.1 eif

Tai)le 5. Preliminary values of band constants for perpendicular bands.

v2ab 
cm“1

v3bc
cm-1

r4 be
cm“1

a'(i -n /?:................................1 % I 2.91 L 0.03 0.944 ±0.005 -1.69 ±0.02
A" - A'Z.- B"..............................1 1 (2.95) 0.954 ±0.005 -1.68 ±0.01
(A'-A")-(B’-B").................. -0.040 ±0.01 -0.011 ±0.003 0.013 ±0.003
rl A'.(l-C)2-S: .....................0 i v i 1476.1 ±0.5 3016.8 ±0.5 1154.6 ±0.5

As only two PQK lines of the band v2ab could be utilized, another procedure 
was attempted. From the observed values of PQ5, PQ6, RQ$, and a’Q6 we cal
culate for A2ab(l - Ç2ab)-~ Ii'2ab from Eq. (14) the values 2.905 cm“1 and 
2.913 cm“1, the average value being 2.91 cm“1.
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Fig. 5. r4ftc(_E). Upper curve: 1020-1110 cm 1. p = 760 mm. Lower curve: 1110-1235 cm 1. 
p = 323 mm. I = 10 cm. s = 1.3-1.9 cm-1.

In order to get a rough estimate of (A'2ab- A")-(B2ab- B")’ Eq. (15) was 
used. Taking the observed RQ0 = 1476.3 = Vo + ^a&C1 - l2ab)2 ~ B2ab> and usin8 
the observed frequencies of PQ5, PQ§, RQ$, and RQ&, we obtain the values 
-0.03 and -0.05 cm-1, the average being -0.04 c.m-1.

In order to make use of the observed RQK lines, Eq. (12) was written 
in the form
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neglecting the term (B3ab- B (J + 1 ). From a plot of this expression, where 
A2ab0 ~^2ab)~ ^2ab = 2-91 cm-1, we obtain

v0JrA2ab(^~^2abP~'^2ab = 1476.1 CUI 
and

(A2ab~A )~ (^2ab~^ )=—0.040 CIH

in good agreement with the values above.
The assignment of the (J) and rRk(J) lines of the three bands was 

carried out in the following way.
Ehe positions of the pPK(J) and A7?K (J) lines are given by the equations 

PPk Q) = pQk ( J) - 2 B' J+ADdJ3 (1 6)
and

AftK (./)-«()«(./)+ 2 ft (J+l)-4ftJ(./+l)3, (17)

where the following approximations have been made: l)'j = l)'f = l)d, 
l)JK = ^jk = 9 an(l = P'k = 9- 11 should, however, be emphasized that 
for higher J and K values, i.e. J> 10 and /< > 6, approximately, it may not 
be permissible to ignore the 1)JK and I)K terms. The I)JK and I)K values 
found by Richardson et al. for the v3bc band show this.

In order to calculate approximate values for the PPK(J) and rRk(J) lines 
of the three bands, Eqs. (16) and (17) were used together with Eqs. (11) 
and (12), the band constants given in Table 5 being inserted, and B't = B" 
3.88 cm-1. l)j was taken to 5.5 x 10-5 cm“1, which is close to the value of 
l)j and Dj for v3a obtained by Boyd and Thompson2 and Allen and 
Plyler.3 Then, calculating the relative intensities of the transitions from the 
formulae quoted by Herzberg,12 taking B" = 3.886 cm"1 and A" = 5.245 
cm“1 (see page 30), it was possible to pick out a number of pP3U) and 
rB3(J) lines in the v3bc and v4bc bands. For the analysis, the following com
bination relations were used :

*Rk(J) pPK(J) = 4[A;(l-Ci)-ß;M' + 4;B(./+l/2) I
-4/)/(./+1)3 + ./3] I (1<S)

rRk(J-V)-pPk(J -C()-B,']A'+4B"(./O/2) I
- 4/>, [./3 + (./+1 )3] I <l9>

'fRK(J-l) + '7\(J)-2 [r0 + .4;(l-C,)2-ft;| i
+ 2[(X-A")-(B; B")]A’2 + 2(B('-B")J2, I '

where K = 3. The small term 4/4, [J3-(J- 1 )3] has been omitted. Using the 
values of 4^(1-^)-/?- and (A^-A") - (B't-B ") from Table 5, and Dj =
5.5 x 10-5 cm“1, graphical representations of Eqs. (18), (19), and (20) gave
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Table 6. Preliminary values of band constants for v3bc and v4bc bands.

r3 be
cm-1 cm-1

Ji'....................................................... 3.873 ±0.005 3.86 ±0.01
Ji".................................................... 3.882 ±0.005 3.88 ±0.01
Ji' - Ji"........................................... -0.011 ±0.002 -0.013 ±0.005
r„±A'(l -U)2-B.'.................. 3016.9 ±0.5 1154.7 ±0.5

"j................................................... 5.5x10-« —

the values of B-, B", B^ — B", and r0 + A^(l -^)2-Bj, listed in Table 6. For 
the v3bc band, it was possible to obtain a value of Dj. Using the approx
imation J3 + (J+1)3~2(J+1/2)3, Eqs. (18) and (19) were written:

(22)
1 ) - pp3 (./ +1 ) -12 m; ( i - c(> - i

./+ 1/2
= 4 B"

Graphical representations gave B't, B", and I)j (5x10 5 and 6x10 5 cm \ 
see Table 6).

For the band, it was assumed that BL-B" = -0.015 cm-1, which 
then gives B't = 3.865 cm-1.

fable 7 shows the final values of the band constants used for calculating 
the frequencies in Tables 8, 9, and 10. As will be seen, some of the band 
constants have been slightly adjusted in order to improve the agreement be
tween observed and calculated frequencies.

It has been possible to explain nearly all the observed lines as PQK, RQk, 
PPKU), and rRk(J) lines. Only a few lines had to be interpreted as PRK(J) 
and rPk(J} lines. Although PRK(.J) and RPK(J) lines generally contribute to 
the intensities of the observed lines, it was thought permissible to omit them 
in most cases because of their low intensity and the limited resolving power 
of the instrument. RPK(J) lines have, however, had to be included in the low 
frequency region of the v4bc band in order to get reasonable agreement be
tween observed and calculated intensities.

The frequencies of the RPK(J} and PRK(J) lines were calculated from 
the expressions

RPKO)-RQK(J)-‘2B'tJ+4DJJ3 (23)

p1<k CO - FQk CO + 2 B't (./ + 1 ) - 4 I)., (J + 1 )3. (24)
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Table 7. Finally adopted valnes of band constants for perpendicular bands.

v2 ab
c m— 1

v3 be
cm-1

v4bc
cm-1

rn +Ahi-c.)2-b:................*0 i I I 1476.1 3016.8 1154.7

Ahi ................................. 2.91 0.944 1.70

(a; a”)-(b;-b").............. - 0.04(1 -0.011 0.013

b" ......................................... 3.880 3.880 3.880

b'........................................... 3.865 3.869 3.865

b' - b" .................................. - 0.015 -0.01 1 -0.015
i

Dj ..................................................... 5.5x10-5 5.5x10-5 5.5x10-5

For higher K and J values, deviations between observed and calculated 
frequencies can be expected due to the neglect of the I)JK and I)K terms in 
Eqs. (16) and (17). In those eases the assignments must be regarded as 
tentative, although they are often supported by the observed relative inten
sities of the lines (see Table 10). The relative intensities have been calculated 
by the author for the pPK(J), rRk(J), nPK(J}, and PRK(J ) lines. For the 
v2ab and v40c bands, the relative intensities of the () lines will not deviate 
much from the corresponding () line intensities of the v3bc band, calculated 
by Jones.6

TableS. Observed and calculated tine structure lines of r2ad(E) band.

Obs. 
cm-1 Assignment

Calc. 
cm-1

zt
(Calc.-obs.)

Calc, relative 
intensity

I pl‘l (0 1431.1 - 1.7 3.1
1432.8 a.............................. I pl>2(4) 1433.1 0.3 4.6
1435.4 ............................ pP2 (3) 1434.9 - 0.5 14.0

f pQg 1439.7 0.2
1439.5

I PP1 (4) 1439.0 - 0.5 3.1
1441.5a.............................. P/>2(3) 1440.9 - 0.6 4.8

I PQ5 1446.0 -0.4
1446.4 ................................

I '>1 (3) 1446.8 0.4 2.9
1448.3 a.............................. pJJ2(2) 1448.8 0.5 4.8
1453.0 a.............................. P04 1452.2 -0.8
1455.0a.............................. p/h (2) 1454.7 -0.3 2.5

I pQs 1458.3 - 2.4
1460.7 ................................

I p/h(i) 1462.4 1.7 1.8
1465.8 ................................ PÖ2 1464.3 - 1.5

(To be continued)
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(To be continued)
2

Table 8 (continued).
Obs. 
cm-1 Assignment Calc.

cm-1
A

(Calc.-obs.)
Calc, relative 

intensity

1471.3 ................................ pQi 1470.2 -1.1
1476.3 . . RQo

RQi
1476.1 - 0.2

1481.8 ................................ 1481.9 0.1
1482.9a.............................. p/?o(O) 1483.8 0.9 3.8
1487.4 ................................ RQ2 1487.6 0.2
1492.1 ................................ 1491.5 -0.6 5.5
1493.0».............................. PÖ3 1493.2 0.2
1496.0 ................................ ^TÎl(l) 1497.3 1.3 5.5
1498.0a.............................. pq4 1498.8 0.8
1500.2 ................................ Rli0 (2) 1499.2 -1.0 6.9

1504.5 ................................ 1 RQb 1504.2 -0.3
1 P7?i (2) 1505.0 0.5 5.7

1506.2 ................................ (2) 1506.8 0.6 7.7

1509.4 ................................
/ RQs 
I rB2 (2)

1509.6
1510.7

0.2
1.3 8.3

RR0 (4) 1514.3 1.2 8.0
1513.1 ................................ RIil (3) 1512.6 -0.5 5.7

RQ~ 1514.8 1.7

RR1 (4) 1520.1 2.1 5.6
1518.0................................ p«2 (3) 1518.3 0.3 7.9

RQ8 1520.0 2.0

1522.7 ................................ / P«0(5)
1 RR3 (3)

1522.0
1523.9

-0.7
1.2

7.8
20.2

1527.3 ................................ J P«i (5) 1527.8 0.5 5.2
1 rR2 (4) 1525.9 - 1.4 7.3
I P^0(6) 1529.5 -1.8 7.2

1531.3 ................................ ) RRz (5) 1533.5 2.2 6.5
I RR2 (4) 1531.5 0.2 18.1
I RRo (7) 1537.0 1.2 6.3

1535.8 ................................ RR1 (6) 1535.3 -0.5 4.6
1 rRi (4) 1537.0 1.2 10.7

1540.2 ................................ 1 ^2(6) 1541.0 0.8 5.6
I P«3(5) 1539.1 -1.1 15.7

I RRo (8) 1544.4 -0.1 5.2
1544.5 ................................ RR1 (7) 1542.8 -1.7 3.9

1 rR4 (5) 1544.6 0.1 9.1
RR1 (8) 1550.2 1.4 3.2

1548.8 ................................ p7?2(7) 1548.5 -0.3 4.7
rR5 (5) 1550.1 1.3 10.3

1 RRz (6) 1546.6 -2.2 13.2

Mat.Fys.Medd.Dan.Vid.Selsk. 33, no. 12.
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Table 8 (continued).

Obs. 
cm"1 Assignment

Cale.
cm-1

d
(Cale.-obs.)

Cale, relative 
intensity

P«0 (9) 1551.8 - 1.7 4.1
1553.5 ................................ P«3 (7) 1554.1 0.6 10.8

P^4 (6) 1552.1 -1.4 7.6

p«o(io) 1559.2 1.2 3.1
Ä7?l(9) 1557.6 -0.4 2.5

1558.0 . . (8) 1555.9 -2.1 3.7
^4(7) 1559.6 1.6 6.1
fiR5(6) 1557.6 -0.4 8.4

P«2 (9) 1563.3 1.7 2.8
1561.6................................. «Z?3 (8) 1561.5 -0.1 8.5

p«6 (6) 1563.0 1.4 18.2
1566.5 - 1.1 2.2

1567.6 ................................ P«3 (9) 1568.9 1.3 6.4
P«4 (8) 1567.0 -0.6 4.7

fl«2(10) 1570.8 -0.1 2.1
1570.9 ................................ Ä^5 (8) 1572.5 1.6 5.1

p«6 (7) 1570.5 -0.4 14.3

seff = 2.0-2.5 cm
a Not resolved.

Table 9. Observed and calculated fine structure lines of v30c(/s) band.

Obs. 
cm-1 Assignment

Cale.
cm-1

d
(Cale.-obs.)

Cale, relative
intensity

2914.0................................ 1 ^4(12) 2914.8 0.8 0.9
1 P(7)Oi) 2914.7 0.7

pP3(12) 2916.8 0.2 1.7
2916.6................................ 2916.7 0.1 1.6

P^8(H) 2914.7 -1.9 1.6

2920.1 ................................
1 ^Pi(12)
1 ^40(10)

2920.6
2918.4

0.5
- 1.7

0.6
1.2

2921.5a .............................. 1
1 pP9(10)

2920.8
2920.5

-0.7
- 1.0

1.5
4.7

pP4(H) 2922.8 -0.5 1.3
2923.3 ................................ pP8(10)

P(6)Oi)
2922.6 -0.7 2.4
2922.7 -0.6

(To be continued)
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"fable 9 (continued).

(To be continued)
2*

Obs. 
cm-1 Assignment

Calc. 
cm-1

d
(Calc.-obs.)

Calc, relative 
intensity

2924.8 .................................
f P^3(H) 2924.7 -0.1 2.4
1 pp7(io) 2924.6 -0.2 2.3

2927.0 .................................
1 PP2(H) 2926.7 -0.3 1.1
1 P^6(10) 2926.7 -0.3 4.5

PP1(11) 2928.6 -0.8 0.9
2929.4 ................................. < ^P5(10)

pP9 (9)
2928.7 - 0.7 2.1
2928.4 -1.0 6.9

pP4(10) 2930.7 -0.4 1.9
2931.1 .............................. < Pps(9)

P(5)(n)
2930.5 - 0.6 3.4
2930.7 -0.4

2932.8 .................................
f P^3(10) 2932.6 -0.2 3.5
1 PP7 (9) 2932.5 -0.3 3.3

2934.8 ..
/ P/,2(H>) 2934.6 -0.2 1.5
I P/’6(9) 2934.6 -0.2 6.3

2937.1 a..............................
[ p/’i(1") 2936,5 -0.6 1.3
I P'W) 2936.6 -0.5 2.9

P^4 (9) 2938.6 0.1 2.7
2938.5 ................................. < P/J8 (X)

P(4)(n)
2938.4 - 0.1 4.7
2938.6 0.2

2940.6 .................................
I PP3 (9) 2940.5 -0.1 4.8
I PP?(8) 2940.4 -0.2 4.6

2942.8 a.............................. ( P/J2(9) 2942.5 -0.3 2.1
j 7>6(8) 2942.5 -0.3 8.6

2944.2 a.............................. ( PPj (9) 2944.4 0.2 1.7
I pP5(8) 2944.5 0.3 4.0

2946.4 .................................
J Pp4 (8) 2946.5 0.1 3.6
I P(3)(n) 2946.6 0.2

2948.2 ................................. I PP3 (8)
1 PP7 (7)

2948.4
2948.3

0.2
0.1

6.2
6.1

2950.6 ................................. I PP2 (8) 2950.4 -0.2 2.6
1 pP6(7) 2950.4 -0.2 1 1.4

2952.6 .................................
/ p/’l (8) 2952.3 -0.3 2.2
1 P/J5(7) 2952.4 -0.2 5.2

2954.0 ................................. 1 pP4(7) 2954.4 0.4 4.6
t P(2)(vi) 2954.5 0.5

2956.4 ................................. P'J3 (7) 2956.3 -0.1 7.9

2958.2 . 1 PP2(7) 2958.3 0.1 3.3
I P^(6) 2958.2 0.0 14.7
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( 7’o be continued)

Table 9 (continued).

Obs. 
cm-1 Assignment

Cale.
cm-1

d
(Calc.-obs.)

Calc, relative 
intensity

2960.2 .................................
1 PP1 (7) 2960.2 0.0 2.6
1 p7>5(6) 2960.2 0.0 6.6

2962.1.................................
1 ^P4 (6) 2962.2 0.1 5.7
1 ^(i)(n) 2962.3 0.2

2964.4 ................................ PVJ3(6) 2964.2 -0.2 9.6
2966.0».............................. P/J2 (6) 2966.1 0.1 3.9
2971.9 ................................. P/'3 (5) 2972.0 0.1 11.2
2974.1................................. p/j2(5) 2974.0 -0.1 4.3
2976.0 ................................. PP1 (5) 2975.9 -0.1 3.2

2978.3 .................................
1 P^4 (4) 2977.9 -0.4 8.1
1 « (0) (n) 2977.9 -0.4

2980.2 ................................. PP3(4) 2979.8 -0.4 2.7
2981.7».............................. P^2(4) 2981.8 0.1 4.7
2984.0».............................. p/>l (4) 2983.7 0.3 3.2

1 P^0(4) 2985.6 0.1 3.8
2985.7

1 «(i)(n) 2985.6 -0.1
(Ref. 6)

2988.2 ................................. P/'3(3)
P/,2(3)

2987.7 - 0.5 14.1 15 1
2989.8».............................. 2989.6 -0.2 4.8 5.2
2991.9» ............................ p/'l (3)

/ P/J0(3)
2991.5 - 0.4 3.0 3 2

2993.5
2993.4 -0.1 3.0 3.2

1 «(2)(n) 2993.3 -0.2

9c)M5 9 a f pQn 2994.7 -0.5 0.8
1 Rl,t (3) 2995.3 0.1 0.5 0.5

2999.2 ................................. I PQ9 2998.9 -0.3 5.2
1 P/Jl (2) 2999.4 0.2 2.5 2.7

3001.0 ................................
/ pQs 3001.0 0.0 4.7
1 «(3) (n) 3000.9 -0.1

3003.1................................ P07
PQ&

3003.0 -0.1 7.7
3005.0 ................................ 3005.1 0.1 24.5

3007.0 ................................
t pQs 3007.1 0.1 18.3
1 p/,i(0 3007.1 0.1 1.8 1.9

3009.0».............................. I pQ4 3009.1 0.1 26.0
1 «(4)(P!) 3008.5 -0.5

3010.6................................ PQ3 3011.0 0.4 70.0
3012.9................................ PC?2 3013.0 0.1 44.3
3015.3................................ pQi 3014.9 -0.4 52.4
3016.7................................ pQo 3016.8 0.1 100 107.5
3018.3................................ pQi 3018.7 0.4 45.4
3020.8 ................................ RQ.2 3020.5 -0.3 36.0
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(7'o be continued)

Table 9 (continued).

Obs.
Assignment

Calc. A Calc. relative
cm-1 cm“1 (Calc.-obs.) intensity

(Ref. 6)
3022.3 ................................ RQs 3022.4 0.1 54.0

1 RQ4 3024.2 0.0 19.6
3024.2 a..............................

1 (0) 3024.5 0.3 3.8 4.0

3025.5 a.............................. RQs 3026.0 0.5 13.2
3027.5 a.............................. RQa 3027.7 0.2 17.1
3029.5 ................................ 3029.5 0.0 5.2
3030.9 ................................ rQ.s

1 RQö

3031.2 0.3 3.0
3032.9 0.4 3.4 3.4

3032.5 ................................
1 Ä«o(l) 3032.3 -0.2 5.5 5.8

3034.3 ................................
f ß(ho 3034.6 0.3 1.0
1 3034.2 -0.1 5.4 5.8

3036.1 a..............................
1 RQn 3036.2 0.1 0.6
1 p«2 (2) 3036.1 0.0 0.6 0.6

3037.9 ................................ Rlh (2) 
ß«0 (2)
RK1 (2)

3038.1 0.2 1.7 1.8
3039.9 ................................ 3040.0 0.1 6.8 7.2
3042.2 ................................ 3041.9 -0.3 5.6 5.9
3043.7 a.............................. (2) 3043.7 0.0 8.3 8.7
3045.7 a.............................. (3) 3045.7 0.0 2.3 2.4
3047.8 ................................ (3) 3047.6 -0.2 7.6 8.0
3049.4 ................................ RK1 (3) 3049.5 0.1 5.7 6.0
3051.4 ................................ ««2 (3) 3051.3 -0.1 7.8 8.2
3053.3 ................................ ««3 (3)

«Ho (4)
3053.2 -0.1 20.1 21.1

3055.4 ................................ 3055.3 -0.1 7.9 8.3
3057.4 ................................ ««1 (4) 3057.2 -0.2 5.5 5.8
3059.0 ................................ rR2 (4) 3059.0 0.0 7.2 7.5
3061.2 ................................ «/?3 (4) 3060.8 -0.4 17.9 18.7

3062.9 ................................
I ««0 (5) 3062.9 0.0 7.7 8.0
1 Rl<4 (4) 3062.7 -0.2 10.7 11.1

3064.4 ................................ ««1(5) 3064.8 0.4 5.1 5.3
3066.9 ................................ «/?2 (5)

««3(5)
3066.6 - 0.3 6.4 6.7

3068.4 ................................ 3068.4 0.0 15.5 16.1

3070.7 ................................
f ««0(6) 3070.5 -0.2 7.0 7.3
1 (5) 3070.3 -0.4 9.1 9.4

3072.3a.............................. / RH1 (6)
1 Rl<5 (5)

3072.4 0.1 4.5 4.7
3072.1 - 0.2 10.2 10.7

3074.1 a.............................. ««2 (6) 3074.2 0.1 5.5 5.7
3076.3 ................................ ««3 (6) 3076.0 -0.3 13.0 13.5

3078.2 ................................
1 ««0(7) 3078.0 -0.2 6.1 6.3
1 ««4(6) 3077.9 0.3 7.5 7.7
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Table 9 (continued).

Obs.
cm-1 Assignment

Cale. 
cm-1

A

(Cale.-obs.)
Cale, relative 

intensity

1 (?) 3079.9 -0.2 3.8
(Ref. 6)

3.9
3080.1 ................................ 1 *«5  (6) 3079.7 -0.4 8.4 10.1

1 ß«2(7) 3081.7 -0.1 4.5 4.7
3081.8 ................................ 1 R«6 (6) 3081.4 -0.4 18.1 21.8
3083.6 ................................. ^«3(7) 3083.6 0.0 10.6 10.9

3085.6 ................................. 1 3085.5 -0.1 5.1 5.2
1 ä«4(7) 3085.4 -0.2 6.0 6.2

1 (8)
1 Ä7i5(7)

3087.4 0.0 3.1 3.2
3087.4 ................................. 3087.2 -0.2 6.6 6.8

f fi«2(8) 3089.2 -0.2 3.6 3.7
3089.4 .................................

| fi«6(7) 3088.9 -0.5 14.1 14.5

3091.2 .................................
| RÜ3 («) 3091.1 -0.1 8.3 8.5
j ä«7(7) 3090.7 -0.5 7.4 7.6

1 R'<(> (9) 3093.0 0.0 4.0 4.1
3093.0 ................................

1 3092.9 -0.1 4.6 4.7

( ä«!(9) 3094.9 -0.1 2.4 2.4
3095.0 ................................. 1 ß«5 (8) 3094.7 -0.3 5.0 5.2

1 RK2(9) 3096.7 -0.1 2.8 2.8
3096.8 ................................

1 (8) 3096.4 -0.4 10.7 10.9

3098.5 ................................
1 RR3 (9) 3098.6 0.1 6.2 6.4
1 rH7(8) 3098.2 -0.3 5.5 5.7

r«o(19) 3100.5 -0.1 3.0 3.1
3100.6................................. r/?4 (9) 3100.4 - 0.2 3.4 3.5

«/t8 (8) 3099.9 -0.7 5.7 5.8

3102.4.................................
( Kit] (10) 3102.4 0.0 1.8 1.8
1 RR5(9) 3102.2 -0.2 3.7 3.8

J r/?9(10) 3104.2 0.0 2.0 2.1
3104.2................................. 1 R«6 (9) 3103.9 -0.3 7.8 8.0

3106.4.................................
1 r/?3(10) 3106.0 -0.4 4.5 4.5
1 R«7 (9) 3105.7 -0.7 4.0 4.1

I R«o(H) 3107.9 0.5 2.2 2.2
3107.4a.............................. r/?4(19) 3107.9 0.5 2.5 2.5

1 RK8(9) 3107.4 0.0 4.1 4.2
I R«l(ll) 3109.8 0.4 1.3 1.3

3109.4................................ fi/t5(10) 3109.7 0.3 2.6 2.7
1 Rl<9 (9) 3109.1 - 0.3 8.1 8.3

3111.9 .................................
1 R«2(ll) 3111.6 - 0.3 1.4 1.4
1 RR6(io) 3111.4 - 0.5 5.5 5.6

(To be continued)
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seff = 1-3-1.5 cm
a Not resolved.

Table 9 (continued).

Obs.
cm-1 Assignment

Calc.
cm-1

zl
(Calc.-obs.)

Calc, relative 
intensity

3113.5................................
1 3113.4 -0.1 3.1

(Ref. 6)
3.2

| «Ä7(io) 3113.2 -0.3 2.8 2.9

p/<o(12) 3115.3 0.0 1.6 1.5
3115.3 ................................ p«4(ll) 3115.3 0.0 1.7 1.7

1 *« 8(io) 3114.9 -0.4 2.9 2.9
| «Ri(12) 3117.2 0.7 0.9 0.7

31 IK.5................................ ^5(11) 3117.1 0.6 1.8 1.9
1 «R9(10) 3116.6 0.1 5.6 5.7

3118.9................................
1 RRz(12)
i *k6(H)

3119.0 0.1 1.0 1.0
3118.8 -0.1 3.8 4.5

(To be continued)

Table 10. Observed and calculated fine structure lines of v4bc(E) band.

Obs. 
cm-1 Assignment

Calc, 
cm-1

zl
(Calc.-obs.)

Calc, relative 
intensity

1028.6 ................................
J ÄP2(15)
1

1029.2
1027.8

0.6
-0.8

0.1
0.2

P^1 (16) 1031.2 0.5 0.1
1030.7 ................................ plJ3(17) 1030.1 -0.6 0.1

ßP4(14) 1030.5 -0.2 0.1

PP4(17) 1033.6 0.6 0.1
PP6(18) 1031.3 - 1.7 0.1

1033.0 ................................ Rl}! (15) 1032.5 -0.5 0.1
ä^3(14) 1033.8 0.8 0.3
ÄP6(13) 1032.1 -0.9 0.1

I PP2(16) 1034.7 -0.3 0.1
1035.0 ................................ ÄP0(15)

I pP5(13)
1035.9 0.9 0.3
1035.3 0.3 0.1

pP3(16) 1038.1 0.2 0.2

1037.9 ................................
pP5(17) 1037.1 -0.8 0.1
fiP2(14) 1037.2 -0.7 0.2
ÄP4(13) 1038.6 0.7 0.1

pP4 (15) 1039.3 -0.7 0.2
1040.0 ................................ pPl(14) 1040.5 0.5 0.2

1 RP& (12) 1040.1 0.1 0.2
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Ta ble 1 O (continued).

(To be continued)

Obs.
Assignment

Calc. A Calc, relative
1 cm-1 (Calc.-obs.)cm intensity

PP2(15) 1042.8 0.2 0.2
p/>4(16) 1041.6 - 1.0 0.1

1042.6 ................................
(17) 1040.7 - 1.9 0.1

fi/J0(14) 1013.9 1.3 0.1
^3(13) 1041.9 -0.7 0.1
*P5(12) 1043.3 0.7 0.1

pP1(14) 1047.3 0.2 0.3

1047.1 ................................ p/>3(15) 1046.2 - 0.9 0.1
p/>5(16) 1045.1 - 2.0 0.1
*p4(12) 1046.6 - 0.5 0.2

1049.4 ................................ 1 p^4(15) 1049.7 0.3 0.2
I pPi(13) 1048.6 -0.8 0.3

pP2(14) 1050.8 - 0.6 0.3
Z’/j6(16) 1048.7 - 2.4 0.3

1051.4 a.............................. p/>8(17) 1047.8 - 3.6 0.1
«/’0(13) 1052.0 0.6 0.7

1049.9 - 1.5 0.5
1 pp5(H) 1051.3 -0.1 0.2

Z’/>3(14) 1054.2 1.2 0.6
P^5(15) 1053.2 0.2 0.2

1053.0a.............................. PP?(16) 1052.2 - 0.8 0.1
fiP2(12) 1053.3 0.3 0.3
PP4(11) 1054.6 1.6 0.3

t ^Pj (13) 1055.4 -0.6 0.4
1056.0 ................................ P^9(17) 1051.5 -4.5 0.1

1 «Pi (12) 1056.6 0.6 0.1
Z’P2(13) 1058.9 0.1 0.5
p/j4(14) 1057.7 - 1.3 0.3

1059.0a.............................. ZT>6(15) 1056.8 2.2 0.4
pP8(16) 1055.8 -3.2 0.1
«P3(ll) 1057.9 - 1.1 0.7
*P5(10) 1059.3 0.3 0.2
/JP3(13) 1062.3 0.8 1.0
pP5(14) 1061.2 -0.3 0.4
pP7(15) 1060.3 - 1.2 0.2

1061.5................................ ^9 (16) 1058.6 -2.9 0.2
*7J0(12) 1060.0 — 1.5 1.0
ßP2(ll) 1061.3 -0.2 0.5
fiP4(10) 1062.6 1.1 0.3
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'fable 10 (continued).

(To be continued)

Obs.
cm-1 Assignment

Calc.
cm_l

zl
(Calc.-obs.)

Calc, relative 
intensity

( ^1(12) 1063.4 - 1.1 0.6
1064.5 ................................ p/J6(14) 1064.8 0.3 0.8

1 Ppl(H) 1064.6 0.1 0.6

p/,2(12) 1066.5 - 1.1 0.7

1067.6 ................................
p 04(13) 1065.8 - 1.8 0.6
Pp8(15) 1063.9 -3.7 0.2
PO0(ll) 1068.0 0.4 1.5

p 03(12) 1070.3 0.1 1.6
PO5(13) 1069.3 -0.9 0.6

1070.2a..............................
pO7(14) 1068.3 1.9 0.4
PO9(15) 1067.6 2.6 0.4
pO2(10) 1069.3 -0.9 0.6
po4 (9) 1070.5 0.3 0.3

1071.0».............................. pOi(ll) 1071.4 0.4 0.9
pO4(12) 1073.9 0.8 0.9
PO6(13) 1072.9 -0.2 1.2

1073.1 PO8(14)
(10)

1071.9 1.2 0.4
1072.6 -0.5 0.8

po3 (9) 1073.8 0.7 1.0

po2(ii) 1074.9 - 1.4 1.0

1076.3 ................................
pO5(12)
PO0(10)

1076.9
1076.0

0.6
- 0.3

0.9
2.0

PO2 (9) 1077.2 0.9 0.8

pO3(ll) 1078.3 - 0.2 2.4

1078.5 ................................
pO7(13) 1076.4 -2.1 0.6
POg(14) 1075.6 -2.9 0.8
PO4 (8) 1078.5 0.0 0.3

1079.9 ................................ 1 POi(10) 1079.4 -0.5 1.2
t po4 (9) 1080.5 0.6 1.0

1 pO2(10) 1082.9 1.0 1.5
po4(ll) 1081.8 -0.1 1.3

1081.9................................ po6 (12) 1081.2 -0.7 2.0
i PO8(13) 1080.0 - 1.9 0.6
1 PO3(8) 1081.8 -0.1 1.1

( po5(ii) 1085.3 0.7 1.4
1084.6 ................................ < PO0 (9) 1083.9 -0.7 2.7

t PO2 (8) 1085.2 0.6 0.9

1087.1 ................................
I POi (9) 1087.3 0.2 1.7
1 PO3(10) 1086.3 -0.8 3.4
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(To be continued')

Table 10 (continued).

Obs. 
cm-1 Assignment

Calc, 
cm-1

zl
(Calc.-obs.)

Calc, relative 
intensity

1087.1 ...............................
1084.4 2.7 1.0

1 p/>9(13) 1083.7 - 3.4 1.3

pP4(10) 1089.8 0.5 1.9
p/’6(ll) 1088.9 0.4 3.0

1089.3 ................................ P/’8(1‘2) 1088.0 1.3 1.0
«P1 (8) 1088.5 - 0.8 1.2
P/,3(7) 1089.7 0.4 1.0

1091.2 ................................ 1 P^j2(9) 1090.8 0.4 2.0
1 p/’o<8) 1091.9 0.7 0.9

P/’5(10) 1093.3 0.5 2.1
P7’7(11) 1092.4 0.4 1.51092.8 ................................
P/>9(12) 1091.7 1.1 2.0
P/’2(7) 1093.1 0.3 0.9

P/'l (X) 1095.3 - 0.5 2.1

1095.8 ................................ P7>3(9) 1094.2 - 1.6 1.6
P/'6(0>) 1096.9 1.1 4.4
Ä^l(7) 1096.4 0.6 1.3

( P'W) 1098.8 0.8 2.6
1098.0 ........................... < Ppd (9) 1097 7 0 3 2.6

I 1096.0 - 2.0 1.6
P^5 (9) 1101.2 0.7 2.9

1 100.5a.............................. ^7’7 (10) 1100.4 0.1 2.3
P7’9(ll) 1099.7 -0.8 3.1
^/>o(7) 1099.8 -0.7 3.8

1 101.5a.............................. P/>3 («) 1102.2 0.7 6.1
I P'T(7) 1103.2 - 1.4 2.5

1104.6 ................................ PJ>G&) 1104.8 0.2 6.2
1 r/'8(10) 1104.0 - 0.6 2.3
1 p/’o(7) 1106.7 0.4 3.21 106.3 a..............................
1 P^4 (8) 1105.7 -0.6 3.5

I PJ>3 (7) 1110.1 1.0 7.7

1 109.1 ..................
1 P^5(8) 1 109.2 0.1 3.9
I P^7(9) 1108.3 -0.8 3.3
1 P/,9(W) 1107.7 -1.4 4.7
( PJ\ (7) 1113.6 0.4 4.5

1 113.2................................ pJ,6 (8) 1112.8 -0.4 8.5
1 P/J8 (9) 1111.9 -1.3 3.4
I p7j2 (6) 1114.6 -0.2 3.8

1114.8................................ P/J9 (9) 1115.6 0.8 6.8
1 R/\) (5) 1115.6 0.8 4.2
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(To be continued)

Table 1 O (continued).

Obs.
cm-1 Assignment

Calc, 
cm-1

A
(Calc.-obs.)

Calc, relative 
intensity

I P?3 (6) 1118.0 0.4 9.4
1117.6................................ P?5 (7) 1117.1 - 0.5 5.1

1 Pp7 (8) 1116.3 - 1.3 4.5
1119.1 ».............................. Ppl (5) 1119.0 -0.1 3.1

pl>2 (5) 1122.5 0.7 4.3
pP4 (6) 1121.5 -0.3 5.6

1121.8 ................................ Ppe(7) 1120.7 - 1.1 11.4
Pp8(8) 1119.9 - 1.9 4.7
pOio 1122.0 0.2

1122.8».............................. PP0(4) 1123.5 0.7 3.8
1123.1 a.............................. Pp7 (7) 1124.2 0.8 6.1

1 Pp3 (5) 1125.9 -0.2 11.1
1126.1................................ Pp5(6) 1125.0 - 1.1 6.5

1 P(>9 1125.2 -0.9 3.3

( Ppl (4) 1126.9 -0.1 3.1
1127.0»..............................

1 P<?8 1128.3 1.3

I Pp2 (4) 1130.3 0.3 4.6
1130.1................................ Pp4 (5) 1129.4 -0.7 6.8

1 Pp6 (6) 1128.6 - 1.5 14.6

I PQ? 1131.5 0.0
1131.5».............................. Pp5 (5) 1132.9 1.4 8.1

1 Pp0 (3) 1131.3 -0.2 3.0

I PQö 1134.8 0.3
1134.5................................ Ppl (3) 1134.7 0.2 2.9

1 Pl>3 (4) 1133.8 -0.7 12.6

1 rQ5 1138.0 -0.5
1 138.5................................ < Pp2 (3) 1138.2 -0.3 4.8

1 Pp4 (4) 1137.3 -1.2 8.1

I PQ4 1141.3 - 1.5
1142.8................................ Ppl(2) 1142.6 - 0.2 2.5

1 PI}3 (3) 1141.6 -1.2 14.0
1144.4 ................................ PQ3 1144.6 0.2
1147.0».............................. Pp2 (2) 1146.1 -0.9 4.9
1148.0».............................. P02 1148.0 0.0

I RQ1 1151.3 0.0
1151.3................................ 1 Ppl(l) 1150.3 - 1.0 1.8
1154.8 ................................ RQo 1154.7 -0.1 100
1158.0................................ pQi 1158.1 0.1

1 PQ2 1161.6 0.3
1161.3 ................................ i p7?0 (0) 1162.4 1.1 3.8
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fable Id (continued).

(To be continued)

Obs.
cm-1 Assignment

Calc.
cm-1

.1
(Calc.-obs.)

Calc, relative 
intensity

1164.9................................. 1165.0 0.1
1 ,Jd4 1168.5 0.8

1 167.7.................................
1 P«l(l) 1166.7 1.0 5.5

I P(>5 1172.0 0.6
1171.1................................ ' (2) 1171.1 - 0.3 8.3

1 1170.1 - 1.3 5.5
1174.7a.............................. (2) 1174.4 -0.3 5.7
1175.2a.............................. ä/?3(3) 1175.3 0.1 20.2
11 75.7................................ PQ6 1175.6 -0.1

1 177.8................................ 1 P«0(2) 1177.8 0.0 6.9
1 Rl<2 (3) 1178.7 0.9 7.9

1 179. (>a.............................. pQi 1179.1 0.1
1180.7a.............................. RI{1 (4) 1179.6 - 1.1 10.7

I (3) 1182.0 -0.8 5.7
1 182.8................................ RIh (4) 1182.9 0.1 18.1

1 pQs 1182.7 0.1

I fiH0(3) 1185.4 0.4 7.7
1 1 85.0 { rRo (4) 1 186.3 1.3 7.3

1 (5) 1183.9 1.1 10.3
1186.ia.............................. pQg 1186.4 0.3
1187.6................................ p«4 (5) 1187.2 -0.4 9.1

(4) 1189.6 0.2 5.6

1189.4.............................. P«3 (5) 1190.5 1.1 15.7
P«6 («) 1188.2 -1.2 18.2
pQio 1190.0 0.6

( P«5 («) 1191.3 - 0.9 8.4
1 192.2................................ 1192.4 0.2 7.5

1 /'(13)(r3a) 1191.7 0.5
( P«0 (4) 1193.0 -0.7 8.0

1193.7................................ ' RKo (5) 1193.9 0.2 6.5
1 Ä/?4 (6) 1194.6 0.9 7.6
1 R«\ (5) 1197.2 0.6 5.2

1196.6................................ (7) 1195.7 - 0.9 14.3
1 RRs (8) 1196.6 0.0 5.7
f Rr3 (6) 1197.9 -0.7 13.2

1 198.6............................
1 RR5 (?) 1198.9 0.3 6.7

(5) 1200.6 -0.7 7.8
RI<2 («O 1201.5 0.2 5.6

1201.3 a.............................. P^4 (7) 1202.2 0.9 6.1
^7 (8) 1199.8 — 1.5 5.6
/?(12) (v3a) 1201.6 0.3

1203.5 ................................ RR(i (8) 1203.1 0.4 10.8
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seff ~ 1-3-1.9 cm-1. a Not resolved.

Table 10 (continued).

Obs. 
cm-1 Assignment

Calc. 
cm-1

zl
(Calc.-obs.)

Calc, relative 
intensity

I *7*1  («) 1204.7 -0.3 4.6
1205.0 ................................ *7*3  (?) 1205.5 0.5 10.8

' *7*8  (9) 1204.0 - 1.0 4.1
*7*0  (6) 1208.1 0.4 7.2
rR2(T) 1208.9 1.2 4.7

1207.7 ................................ (8) 1206.3 - 1.4 5.1
rR7 (9) 1207.2 -0.5 4.1
*7*i(7) 1212.2 0.8 3.9
*7*3  (8) 1212.9 1.5 8.5
*«4 (8) 1209.6 - 1.8 4.7

1211.4................................ *R6 (9) 1210.5 - 0.9 8.0
*7?8(1O) 1211.4 0.0 2.9
*7*g(10) 1208.3 -3.1 5.7

7J(H) (r3a) 1211.3 -0.1
I *7*o  (7) 1215.6 1.1 6.3

1214.5 ................................ *7*5  (9) 1213.7 - 0.8 3.8
1 *T? 7(10) 1214.6 0.1 2.9

*7t2 (8) 1216.3 - 1.4 3.7
*7*4  (9) 1217.0 - 0.7 3.5

1217.7 ................................ *7* 6(1O) 1217.9 0.2 5.6
*7*9(11) 1215.6 -2.1 3.9
*7*1(8) 1219.6 - 1.2 3.2
*7*3  (9) 1220.3 -0.5 6.4

1220.8 ................................ *7*5  (10) 1221.1 0.3 2.7
*7*8(11) 1218.7 -2.1 2.0
P(10) (r3a) 1220.8 0.0
*7*o(8) 1223.1 - 1.0 5.2
*7* 2 (9) 1223.7 -0.4 2.8
*7*4(10) 1224.4 0.3 2.5

1224.1 ................................ *7*6(11) 1225.2 1.1 3.9
*7*7(11) 1221.9 -2.2 2.0
*7*9(12) 1222.9 - 1.2 2.5

i *7*1(9) 1227.0 - 1.0 2.5
1228.0».............................. *7*3(10) 1227.7 -0.3 4.7

1 *7*8(12) 1226.0 -2.0 1.3
7>(9)(v3a) 1230.2 0.1

*7*o  (9) 1230.4 0.3 4.1
1230.1 ................................ *7*2(10) 1231.1 1.0 2.1

*7*5(11) 1228.4 - 1.7 1.9
*R7 (12) 1229.2 -0.9 1.3

1235.9 .... f *7*3  (11) 1235.0 -0.9 3.3
1 *7*5(12) 1235.7 -0.2 1.2
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3. Results

From the rotational analysis values have been derived for the rotational 
constants A" and A{, the Coriolis coupling factors and the band-centre 
frequencies v0. It can be shown13 that to a good approximation the following 
expression is valid :

w «.'i gZK--»; -o') <b; b')]+^b".
As the magnitude of B" is known (3.88Oo cm-1), A" can be calculated. 

From the known values of Bt — Bn, (Ai - A”)-(Bt — B"), and A", At can be 
evaluated for the three perpendicular bands. The values of Ai, Bt, and 
A^ ( 1 - CJ - B- have then been used for the calculation of the C values. 
Finally, the band-centre frequencies were obtained from v0 + Af(l - ^f)2 - .
The results are given in Table 11. The value A" = 5.257±0.02 cm-1 derived 
here from the analysis of the three perpendicular bands is close to the one 
(5.245 cm-’) calculated from B", assuming rCH = rCD and regular tetrahedral 
structure, and it also compares well with the value 5.243 cm-1 obtained from 
the Hainan study of the v3bc band.7

Table 1 1 . Rotational constants A', Coriolis coupling factors £, and band
centre frequencies r0 for perpendicular bands.

v2 ab ’’3 be v4 be

Aî(cm !).......................................... 5.20, 5.235 5.255
- 0.302 0.081 0.588

v0(cm_1).......................................... 1471.2 3016.2 1157.7

In Table 12 the results for the V3bC band are compared with the values 
obtained from the Raman investigation by Richardson et al. (E.H.R.) and 
the infrared study by .Jones (L.H.J.). It is seen that the author’s results 
are in somewhat better agreement with the Raman investigation than with 
the infrared study.

In Table 13, experimental C values are compared with theoretical values 
calculated recently from force constants by Jones and McDowell,14 and 
by Mills.15 The agreement between the values obtained by the present in
vestigations and the theoretical work seems satisfactory, except in the case 
( 1 f ^3 be

The sum of the zetas must satisfy the £ sum rule:16 = Be/2Ae, as far 
as anharmonicity can be neglected, and no resonances occur. As the “equili
brium” rotational constants, Ae and Be, are not known, one has to use the
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a Assumed value.

Table 12. Band constant values for the v3bc band in cm
Raman’

E.H.R. et al.
Infrared14

L.H.J. This invest.

A'(l-Ç)-B'.................................. 0.955 0.924 0.944
A"-A'£-B"................................ 0.961 0.920 0.954
(A'-A")-(B'-B")..................... -0.0058 0.004 -0.011
r0 T A'(l -C)2- B'......................... 3017.17 3017.4 3016.8
A'....................................................... 5.223 5.24 5.235
B'....................................................... 3.863 3.865 3.873
B"....................................................... 3.877 — 3.882
B'-B".............................................. -0.0138 -0.013 -0.011
c......................................................... 0.0775 0.08B 0.081
4’o......................................................... 3016.59 3016.9 3016.2
D'j .................................................... 5x10-5 1

5.5 x 10-5 a 5.sx IO'5
DJ ..................................................... 4.7x10 5 J

Table 13. Experimental and theoretical C values for doubly 'degenerate 
normal vibrations.

^2 ab C3 be *4 be

Experimental values:
N. Ginsburg and E. F. Barker -0.218 to 0.312 0.261 to 0.213 0.625 to 0.692
L. H. Jones .................................. 0.086
E. H. Richardson et al........... 0.0775
This investigation....................... -0.302 0.081 0.588

Theoretical values:
L. H. Jones and R. S. McDowell 0.260 0.040 0.589
I. M. Mills..................................... - 0.263 0.044 0.588

values for the vibrational ground state. This must, however, be considered 
a rather good approximation. Thus, the £ sum ride may be written: =
B"/2A" = 0.370. 'fhe sum of the zetas is 0.367, which should be compared 
with 0.668 to 0.593 found earlier by Ginsburg and Barker.17

A comparison between the present fundamental frequencies and values 
from previous investigations is given in Table 14. 'fhe values adopted 
here mean a revision of the results of Wilmsiiurst and Bernstein re
garding the fundamentals r3a, v4a, v3bc, and v4bc.
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Table 14. Comparison of the present results with previous grating or 
prism data (cm”1).

Symmetry Normal 
vibration

Present
investigation

Other
investigations

Adopted 
values

”1 2948* 2945 a 2948

1'3« 2210* 2200 a 2210
A1 2200.03b

p4 a 1306.5 1306.8e 1306.5
1300a

v2 ab 1471.2 1477.Ie 1471.2
1471 a

v3 be 3016.2 3021 a 3016.6
E 3016.9'’

3016.59e

v4 be 1157.7 1156.3e 1157.7
1155a

a See Ref. 5. * Estimated unperturbed frequency (see page 6).
b See Ref. 3. 
c See Ref. 17.
(1 See Ref. 6. 
e See Ref. 7.

IV. Overtones and Combinations

Overtone and combination bands have been observed in the region 
2000-6000 ent-1. Thirty-six pronounced absorption bands have been 
measured and interpreted as summation bands. It was possible to explain 
sixteen bands as binary combinations, whereas the rest of the bands have 
been interpreted as ternary and quaternary summation bands. Only in three 
cases, however, it has been necessary to make use of quaternary com
binations.

The results are given in Table 15. In the column with observed fre
quencies square brackets indicate the possible presence of Fermi resonance, 
which makes definite assignments uncertain.

Only below 5000 cm”1 the bands have been characterized as parallel 
( II) or perpendicular (J.) bands. The reason for this is the limited resolving 
power of the spectrograph al high frequencies and the increased possibility 
of interactions between bands, which may change the shape of the bands 
considerably.

For the calculation of the combination frequencies, observed frequencies 
have been used rather than calculated values. In some cases this gives more
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'fable 15. Possible assignments of overtones and combinations.

a Displaced by Fermi resonance with fundamental. 
b CH4?

Assignment Symmetry
Band 

structure 
obs.

Intensity
Frequency (cm-1) A

(Calc.- 
obs.)Obs. Calc.

4 be + 4 he................................ A, + E 11 s 2316 a 2315
4 a + 4 be......... E VW ca.2460 2464 ca. + 4
4 a + 4 a........... Ax II w 2597 2613 + 16
2 ab + 2 ab . . . . Ai + E s 2910a 2942 + 32
3 a + 4 be......... E II w 3337 3358 + 21
3 a + 4 a........... Ai m 3498 3506 + 8
4a + 4 be + 4 be. Ai + E VW 3617 3622 + 5
2ab + 3a......... E VW 3670 3671 + 1
4 a + 4 a + 4 be . E 1 VW ca.3750 3771 ca. + 21
2 ab + 4 be + 4 be Ai + Ai+2E ± VW ca.3795 3787 ca. - 8
4a + 4a + 4a.. Ai VW 3874 3919 + 45
2 ab + 4a + 4a . E w 4056 4084 + 28
2ab + 2ab + 4 be Ai 1 A 2 I 2 E w 4072 4100 + 28
1 + 4 he.............. E 1 w ca.4126 4128 + 2
2 ab + 2 ab + 4« A» + E II VW 4216b 4249 + 33
3 be + 4 a......... E 1 w 4313 4323 + 10
3 « + 3 «........... Ai II VW 4342 4400 + 58
2 ab J 3 he......... Ai H A„ 1 E 4474 4488 1 14
3 « + 4 a + 4 <1 . . Ai VVW 4783 4813 + 30
4 a + 4 a + 4 he + 4 he............ Ai + E 1 j 4928 4. 26
2 ah + 4 he + 4 be + 4 he......... Ai + A2+3Ej vvw 4902

1 4944 + 42
2ab + 3a + 4a . E 1 VVW 4962 4978 4 16
2 ah + 2 ah + 3 a Ai + £■ VW “5105 5142
1 + 3 a.............. Ai II VW 5164 5170 —
3 a + 3 he......... E VW 5223 5217 —
1 + 4 be + 4 be . . A, + E 5257 5285
3 be + 4 be + 4 be ^1 +a2+2e VW 5311 5332 __
2ah + 4a + 4a + 4 a.............. E VW 5367 5391 + 26
3 a + 3 a + 4 he . E vvw “5494 5558 —
2 ah + 2 ah + 4 a + 4 a............ Ai + E | 1 5555
2 ah + 2 ah + 2 ah + 4 he .... Ai + As + 3Ej vvw 5558

I 5571 —
1 + 4 a + 4 a ... Ai 1 5583
1 + 2ah + 4he. . Ai + A*+E  ( VW 5585 i 5599
3 he + 4 a + 4 a . e: VW _5626 5630 __
3 a + 3 a + 4 a . . Ai vvw 5692 5706 + 14
1+1.................. Ai w ~5762 5940 —
2 ah + 3 a + 3 a . E w 5860 5871 —
1 + 3 he.............. E w 5983 5987 —
3 he + 3 he......... Ai + E . w 6024 6033 __

3
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reasonable agreement between calculated and observed frequencies. Also 
from a theoretical point of view this procedure is the more correct.

In general quite large negative anharmonicities are observed, e.g. the 
difference rcalc — robs is positive. However, a few of the observed combination 
frequencies show small positive anharmonicities.

The prominent absorption at 6024 cm“1 has been interpreted as the first 
overtone of the carbon-hydrogen stretching frequency, 3bc \ 3bc, the an
harmonicity being —7 cm“1. Phis anharmonicity is, however, much smaller 
than one should expect for the first overtone of a C-H stretching frequency, 
in which case an anharmonicity of the magnitude of -100 to —200 cm“1 
would seem reasonable. A probable explanation is that the band, because 
of Fermi resonance, has been displaced towards higher wave-numbers. 
Another possibility would be that the band is the quaternary combination 
3 (i + 4a + 4(t + 4a, the calculated frequency being 6120 cm“1. The observed 
intensity of the band, however, seems too high for a quaternary combination, 
although Fermi resonance may have increased it.

Generally, if must be emphasized that on account of the great anhar
monicities and the possible effects of Fermi resonance and other interactions, 
the assignment of the bands to specific combinations, especially in the region 
5000-6000 cm“1, is only tentative.
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Nole added in proof: A calculation of the unperturbed frequencies using first- 
order perturbation theory18 and assuming that the intensity ratio / (2 i>2 ab)/1 (n) 
--- 0.5 (see Fig. 1) gives 2i’2((tl = 2930 cm 1 and tq = 2950 cm-1.
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Synopsis
Natural neon was bombarded by a-particles with laboratory energies ranging 

from 12 to 20 MeV. The neon gas serving as target was used at the same time 
as filling gas for a gridded, electron collection type ionization chamber used to 
measure the emitted carbon ions.

The differential cross section at C.M. angle 90° was measured as a function of 
energy; the excitation curve shows several peaks (Fig. 10). The angular distribu
tions were measured for each of these peaks (Fig. 12). One distribution follows a 
[P8 (cos 0)]2 curve; this peak may correspond to a single 8 + state in the compound 
Mg24 nucleus at 25.2 MeV excitation energy, having r< 150 keV. The other angular 
distributions also show strong maxima and minima, but at least two even angular 
momentum states must contribute to each peak. It is believed that a somewhat 
larger number of states participate in the reaction, statistical variations in this 
number being responsible for the appearance of the excitation curve.

Printed in Denmark 
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1. Introduction

At the International Conference on Nuclear Structure, Kingston, Canada, 
u in the autumn of I960, results obtained by Almqvist, Bromley and 

Küehner1) of the elastic scattering of carbon ions and of the reaction 
1gC (1gC, a) iøNe were reported. These authors found peculiar resonances in 
the elastic C-C process for ion energies above the Coulomb barrier and in 
some reaction processes for energies just below the barrier. Therefore, it 
might be expected that also the reaction

2gNe + ^He-> ^C +J2C (-4.6 MeV) (1)

would show interesting features, and it was decided to make a study of this 
process by means of the a-beam from the Copenhagen cyclotron.

Since the energy of our a-particles is 20 MeV, carbon ions with an 
energy of about 6 MeV in the C.M. system are produced in reaction (1). 
An apparatus was constructed by means of which these fission carbon ions 
could be detected2). The principle of the method was to use an ionization 
chamber filled with neon to such a pressure that the short range heavily 
ionizing fission ions were stopped inside the chamber, giving pulses corre
sponding to their full energy, whereas a-particles and other lighter ions 
coming from the target spent only a small part of their range in the chamber 
and thus gave only small pulses. At the same time the neon gas acted as 
the target, the a-beam being passed across the ionization chamber inside 
a lube with small side holes.

In three separate experiments with different tubes the number of fission 
ions al the lab. angles 90°, 62° and 58° were counted. Search for other 
modes of fission than reaction (1) was made, but none were seen. A search 
for the reaction 23Si(a, O16) 016 was also made, using SiII4 in the chamber3), 
but neither was this process seen.

The results for reaction (1) indicated a strong angular variation of the 
cross section. To measure the angular distribution in more detail an ap
paratus based on the same principle, but having a different geometry, was 

1*  
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built; it will be described in the present paper. Preliminary results have 
been briefly reported4*.

It was soon found that the cross section was also varying strongly with 
the energy of the a-particles. Therefore it was necessary to construct a 
device for measuring the a-energy continuously during the experiments in 
order to ensure that it remained constant. With this energy monitor in use,

Fig. 1. The neon chamber. The a-beam is limited by the lead stop Pb and the (defining) gold 
stop Au, and it is measured by the evacuated Faraday cup F. G is a Frisch grid, G collector 
electrodes, and Th a source of natural a-particles used for calibration. R are two rotatable brass 
rods carrying the channels which define the emission angles of the carbon ions. Vertical (upper) 

and horizontal (lower) sections are shown.

an excitation curve was obtained with a somewhat different geometry for 
C12 detection, in which particles emitted in a wide angular range, approx
imately 2()°—160°, were registered. The excitation curve showed marked 
resonances5*.  However, the wide angular range involved a rather thick 
target; furthermore, by the geometry the different angles had different 
detection efficiencies. Therefore, it was realized that a better way to find 
an excitation function might be to measure the differential cross section for 
0 - 90° as a function of energy.
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Ehe present paper deals with such measurements as well as with measure
ments of the angular distribution for a number of resonances.

2. Experimental apparatus

The carbon ions were detected by means of a gridded ionization chamber. 
Part of the apparatus is shown in Fig. 1. The ionization chamber is housed 
in a steel lube with 150 mm inside diameter. The a-beam traverses the lube 
along a diameter; it enters through a side tube carrying a lead plate with 
a hole, 6x11 mm2. A nickel foil, 

Fig. 2. Section through the neon chamber 
perpendicular to the beam.

1 mg/cm2 thick, separates the chamber

from the cyclotron vacuum; the window is 6x11 mm2, but just behind it 
is placed a gold diaphragm which reduces the beam cross section to 5x10 
mm2. Right opposite the entrance tube another side tube housing a Faraday 
cup is placed; it is connected to the cyclotron vacuum through a rubber 
tube, and is separated from the ionization chamber by means of a tantalum 
foil of thickness ~ 20 mg/cm2; this window is circular and 15 mm in dia
meter. Inside the chamber the a-beam passes through a duct so that, from 
the active volume of the ionization chamber outside this duct, the beam 
can be seen only through some narrow channels in the side walls.

Fig. 2 shows a vertical cross section perpendicular to the beam direction, 
and 1'ig. 3 shows the electrodes of the ionization chamber viewed from 
below. The grid consists of parallel 0.15 mm platinum wires, spaced 3 mm, 
and held by a brass ring supported by three teflon insulators (one of them 
shown in Fig. 1 ). 'There are two collector electrodes, each connected to its 
own preamplifier; thus, there are actually two ionization chambers.

1 he duct is made ol four pieces of dural screwed to the bottom plate 
and placed very accurately; on lop is a lid. At the two ends special shields
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are placed, and Hie only openings left are the actual emission channels in 
two circular brass rods placed in the side walls of the duct in the way 
shown in Fig. 1 and, in more detail, in Fig. 4. The rods can be rotated from 
outside and their position can be read by means of a pointer and a scale; 
the vacuum seal is provided by o-rings. The rods are 5.0 mm in diameter; 
the upper end of each rod is made of two half circular pieces screwed to-

Fig. 4. Details of a rod with channels, e and / denote the horizontal and vertical extensions of 
I he a-beam. e = 0.5 cm. f 1.0 cm. A cross section and a side view of a rod are shown.

gelher, and between them is a 0.1 mm bronze foil separating the two rows 
of channels cut in the pieces. There are 14 channels in each rod, each 
channel 0.5 x1.0 mm2 in cross section. To obtain a higher angular resolu
tion some measurements of the angular distribution were made by using 
rods with narrower channels; each of these rods had 28 channels (in four 
rows) of cross section 0.2x1.0 mm2.

The chamber was filled with pure neon. In our earlier experiments, a 
few percent of methane had been added, but to avoid trouble from recoil 
carbon ions, pure neon was used in the present experiment. The chamber 
was found to work equally well without CH4 and with much lower voltages. 
Mostly, neon pressures of the order of 200 mm of Hg were used, and the 
voltage on the collector electrode was 100 V; at very low neon pressures 
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(<50 mm) the voltage had to be lower. The gas was continuously purified 
by circulation over hot calcium in a side tube.

Via a standard amplifier the chamber was connected to a 100-channel 
pulse height analyzer. Calibration was made by ThC + C’ a-particles crossing 
the chamber in a well collimated beam. The particles were slopped by 
hitting the duct; they dissipated an energy ol’ the order of 1 MeV in the 
chamber. The energy resolution (full width al half maximum height) was 
about 8°/0, approximately what should be expected from straggling. For

Fig. 5. Pulse height distribution showing a peak at 6 MeV corresponding to C12 ions. The spec
trum was obtained with 0.5 /z Coulomb of 19.5 MeV a-particles and = 62°. The neon pres

sure was 300 mm of Hg.

emission angles in the range 20° <#<80° the fission ions gave a peak 
in the energy distribution curve well separated from the background; an 
example is seen in Fig. 5.

The energy of the a-particles was changed by means of absorbers, and 
it was measured by another gridded ionization chamber connected to 
another 100-channel pulse height analyzer. The analyzed6* beam from the 
cyclotron was passed through a lead diaphragm with a hole, 22 mm in 
diameter (Fig. 6). Behind it three foil holders were placed in a slide ar
rangement; each could be set in four different positions and, in this way, 
dill'erent absorber thicknesses could be introduced in the beam. The absorber 
foils were 25 mm in diameter. Some were of nickel, the thicknesses being 
multiples of 0.5 mg/cm2; others were of beryllium, in multiples of 5 mg/cm2.
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Also Al foils were used. To cover the energy range 12-20 MeV several sets 
of foil holders were used. Behind lhe foils a second, vertically adjustable, 
lead diaphragm reduced lhe beam cross section to 5xl() mm2, and behind 
il lhe beam passed through a 0.16 mg/cm2 gold foil, placed at an angle of 
45°. The elastically scattered a-particles from this foil were registered by 
the a-ionization chamber; it was similar in construction to a chamber 
earlier described8). It was filled with argon to about three atmospheres with

Fig. 6. The experimental arrangement.
N: Neon chamber. A: Ionization chamber for measurement of energy of scattered a-particles. 
Pb: Lead stops. F: Movable holders with absorber foils. Au: Gold scattering foil. Th: Removable 

source of natural a-particles.

an admixture of a lew percent methane; the gas was continuously purified 
by circulation over hot calcium, l he resolution for ThC a-particles was 
2"/0, or 160 keV. For some unknown reason, maybe because the width of 
the chamber was insufficient, lhe resolution was slightly inferior for the 
scattered a-particles, about 250—300 keV. Other measurements by solid- 
stale counters have indicated that the energy spread of the undegraded 
beam was about 70 keV.

'flic thinnest Ni foil reduced lhe a-cnergv by 70-100 keV. Smaller 
changes were sometimes obtained by deliberately changing lhe Dee positions 
or other cyclotron parameters. The energy of the a-particles at the target 
could also be varied by changing the pressure in the neon chamber and 
thus the absorption in the neon gas in front of lhe target volume.
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3. Evaluation of the differential cross sections from
the measured numbers

Figs. 7 and 8 show the geometry. We first want to find the number of 
carbon ions escaping through one channel. Suppose the channels are set 
at an angle #0. We take the horizontal plane through the channel as xy- 
plane (Fig. 7). Consider such particles in this plane which move in direc
tions having angles in the interval d0 -t- Ad < < d0 4- Ad + dd (here, for the

Fig. 7. Horizontal section through a channel.

present considerations Ad is a fixed angle). If they are to escape through 
the channel, they must start within a region of the target having the thickness

(2)

where a and d are the width and 
If they start from the depth y

the length of the channel.
they have to be emitted within a solid

angle
do

rd d • h
r2

a - I Ad-d I 
sin (d0 + Ad) ’

(3)

where h is the height of the channel and where

d b + y
2 sin (d0 + Ad) ’ (4)

b having the meaning shown in Fig. 7.
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However, il is necessary lo lake into account also the z-dimension. 
Consider a line element of target parallel to the .r-axis and having coordinates 
i] and z. If I z I is not too high, particles may escape with a scattering angle 
#0 + zf$; to a first approximation the target thickness corresponding to such 
particles is again given by (2), the scattering angle and its projection on the 
.ry-plane not differing much from each other.

For |z| > -/i, the solid angle is (Fig. 8)

, rdd(h— d(o = (/:d\)
(5)

where
\d h 6 +y 1 d b + y

/• =
2 sin(#0 + zf$) COS (f) 2 * sin (#0 + J$) (6)

sin ($0 +/li?) 2

For I z I < - h the solid angle is given by (3).

For the angle #0 + z1# the yield from the line element is

d3F d o \ n dy dz
dw)^ = &o+^ " ef Na x • dcu , (8)

where N is the number of Ne20 atoms per cm3 of target gas, n is the number 
of a-particles having passed the total beam cross section of breadth e (= 0.5 
cm) and height f ( = 1 cm); Ax is given by (2), dw by (3) or (5), and the 
factor 2 enters because two identical particles are created in the fission 
process.
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Inserting a = 0.05, h = 0.1 and d = 0.5, one linds

1
sin (#o+ d$)

c/tf dy ,

where b + y 
max = ^max sin

1 b + y
5 sin (#0 + Ad) ’

and 2 nN da
ef dw ’

the cross section —— being assumed to be constant for all possible values of 
a co

Ad corresponding to a fixed d0. By further integrating between the limits 
y = 0 and y = 0.5, one gets

dY - 0.0005
lj^io • I J#I

sin (d0 + Ad)
dd. (10)

Fig. 9 shows, for d0 = 30°, this value dY as a function of d = d0+Ad. 
l'lie distribution is almost a triangle. If we are interested merely in the 
total area, we may just as well replace the denominator sin(#0+zl#) by 
simply the constant value sin d0. Integration of (10) then gives

. - -0.0002 mV-
sin d0

da
da)

Fig. 9. Approximate response curve for channels set at d0 = 30°. A correction 
to the curve is given in the text.

Taking into account the number of channels one linds for the number
of carbon ions

nc = 28 • 10 4 1 xr (l°-—* nN .sin d0 dca
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From this expression the differential cross section in the lab. system 
is found. The C.M. cross section is found in a well-known way \

The distribution given by (10) and shown in Fig. 9 is not correct. If we 
waul to consider the actual distribution we cannot use the approximation 
in which the angle and its projection on the .ry-plane are put equal. If 
is the angle in the xy-plane, <p the inclination and ft' the actual angle, then 

cos /)' = cos ft cos <p. For ft = 30° and | (p | = <pmax =  this gives ft' = 32 . 

In this example, the center of gravity of the distribution is displaced 0.7, 
so instead of being 29?8 as in Fig. 9, it is about 30?5. Thus for small angles, 
and especially when the higher angular resolution is used, a correction to the 
angle is needed (note: ft = 30° corresponds to ®Cln ~ 45°).

4. Results and discussion

By setting the channels at the 
energy, and counting the number

proper angle, slightly dependent 
of carbon ions with various foils

on a-
inler-

posed in the beam the excitation curve giving dZT f(,r 0Cm 90 was ob

tained (Fig. 10). Like the earlier curve8* it shows a number of peaks, the 
positions of which are, as a rule but not always, the same in the two curves; 
the peaks al 12.6, 13.6, 16.0 and 16.3 from the earlier curve occur in Fig. 10 
at 12.7, 13.4, 15.9 and 16.2. However, the two curves are not identical and 
they should not be so, because they deal with different quantities. The 
earlier curve was obtained by counting ions in a wide angular range, and 
it thus gives the variation of the “total” cross section, whereas the present 
curve refers to the differential cross section at a certain angle. Since the 
angular distribution is not isotropic, and since it is not the same for different 
energies, the two quantities must vary with energy in different ways. In 
fact, it is surprising that the two curves are so much alike, and it may 
indicate that, although the angular distribution varies with energy, this vari
ation may be rather smooth.

One demonstration of the difference is the fact that we were unable to 
lind for 69 = 90° any peak corresponding to the pronounced maximum in 
(he “total” yield curve at 14.3 MeV. The observation that the excitation 
function for 0 ~ 45° has a sharp peak at this energy is noteworthy, and it 
is in accordance with the angular distribution (Fig. 12).

Another demonstration may be the smaller widths of the peaks in Fig. 1(1 
compared to the earlier curve; however, the earlier geometry involved a 
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somewhat larger effective target thickness, which is responsible for part of 
the increase in width. The difference between the two curves with respect 
to relative heights of the various peaks is more significant.

As regards the reliability of the curve in Fig. 10, we think that it is sub
stantially correct for energies above 12 MeV. For lower energies the meas
urements become difficult, because the thick degrader foils and the ensuing 
rather large compound scattering results in a considerable reduction of the

Energy C.M.
Eig. 10. Differential cross section for the Ne2" (a, C12)C12 reaction al C.M. angle 90’.

part of the beam which enters the neon chamber through the various stops. 
Since furthermore the fission cross section is rather small below 12 MeV, 
only few pulses were recorded. Additional troubles arise because, at these 
low energies of the incoming a-parlicles, the pulse height spectrum from 
the neon ionization chamber docs not show a carbon peak which is well 
separated from the background of other pulses. This background has a 
tail extending to energies higher than the carbon energies, probably caused 
partly by processes in the chamber initiated by neutrons from the beryllium 
absorber foils. For these reasons, some ambiguity is involved in the estima
tion of the fission cross section below 12 MeV. For the inverse process the 
Chalk River group8’ has, for energies corresponding in our scale to 10—11 
MeV, found an almost constant cross section of about 0.1 mb/ster. The 
present estimations give 0.3 mb/ster.

A peculiar feature of the curve is the non-existence of resonances below 
12 MeV and the rise in the fission cross section at this energy. Part of the 
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explanation may be that at lower energies the low penetrability through the 
Coulomb barrier between the two carbon nuclei prevents fission from 
competing successfully with other modes of decay of the compound nucleus. 
In this connection, a comparison with the C-C elastic scattering curve meas
ured al Chalk River1)8) is interesting (see Fig. 11). The prominent peak that 
we find al 12.1 MeV is just barely seen in the elastic scattering, but, apart 
from this, there is a very close agreement between the resonance values 
found in the two experiments.

Fig. 11 The curve shows the cross section for elastic C12-C12 scattering at C.M. angle 90 as a 
function of C.M. carbon energy, as obtained by the Chalk River group1)- Arrows indicate posi

tions and amplitudes of our peaks for the Ne20 (a, C12)C12 reaction.

In Fig. 10 the narrowest peak is the one at 15.9 MeV; it has a half width 
of 145 keV or, when the a-energy is measured in the lab. system, 175 keV. 
This is presumably somewhat more than the energy spread of the beam 
having passed the degrader foils, the window and the neon gas in front of 
the target volume. Also the two peaks between 12 and 13 MeV show half 
widths (~ 300 keV C.M.) somewhat larger than the estimated straggling 
in the beam. Comparing the cross sections from Fig. 10 with the elastic 
C-C cross sections, one can obtain rough estimates for the ratio rc/rx of 
the partial widths for emission of carbon nuclei and of a-particles; for the 
15.9 MeV resonance one linds /), ~ 6 /’a.

Fig. 12 shows the angular distributions for the various peaks in Fig. 10 
and for one energy (14.3 MeV) at which the “total” cross section (the earlier 
curve) has a peak, but Fig. 10 has none. When obtaining these distributions, 
the energy of the incoming a-particles was measured simultaneously with 
the measurement of each point, and the mean energy was constant to better 
than ±30 keV. When the angle is changed by rotating the rod, the position
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Fig. 12. Angular distributions of carbon ions from the reaction Ne20 (a, C12)C12 at various C.M. 
energies (entrance channel) written in the figure. For one point in the 13.6 MeV distribution the 
approximate angular response function for the channels is indicated. One distribution, for

15.9 MeV, was measured with a higher angular resolution, again indicated for one point.

of the target volume is shifted, and therefore the mean energy of the re
ading a-particles is slightly altered. However, this effect was compensated 
by varying the pressure in the neon chamber.
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Since the reaction particles, in both the entrance and exit channels, 
are spinless and all have positive parity, and since two identical particles 
are emitted, the compound states which may be involved must have even 
parity and even angular momentum. If the reaction goes through a single 
level in the compound nucleus, the angular distribution will follow a 
[Pz(cos0)]2 curve. This is considered to be true for the a-energy 15.9 MeV, 
and it is inferred that this peak corresponds to a 8 + level in the compound 
Mg24 nucleus at excitation energy 25.2 MeV and with a total width smaller 
than 150 keV.

The situation is not so clear for any of the other peaks, and it may be 
concluded that each peak covers more than one level. If two levels con
tribute to a peak, the angular distribution will be described by a combina
tion of two even Legendre polynomials. If the levels do not overlap, but 
lie so close together that the spread in the a-energv prevents their resolu
tion, the angular distribution will be given by

(7.Q ~ (,^PO2 ’ (U)

a2 being real and positive, /1 and /2 even. If the levels overlap, the distribu
tion will be

d/2 ~ + æ2 1

If in formula (12) the coefficients are real, the distribution will have zero 
points. In other cases there are generally no zero points. Of course, the 
limited angular resolution tends to till out the valleys; however, in some 
cases the experimental points approach the axis of abscissae, whereas for 
other a-energies the valleys are not so deep.

The angular distributions in Fig. 12 may be divided into four groups. 
The three first distributions for 12.1, 12.6 and 13.6 MeV have two maxima 
between 30° and 100°. The second group, for energies 14.0, 14.3 and 14.6 
MeV, have three maxima and not very deep valleys. The third group, 14.9 
and 15.3 MeV, have three or four maxima, one deep minimum, the other 
minima not being so deep. Idle fourth group, 15.9 and 16.3 MeV, resembles 
the second by having three maxima, but deviates by having two deep 
minima in between.

For 12.1 MeV the cross section is very low for 35° and 75°. We con
clude that the distribution is of type (12) with real coefficients, cor
responding to (at least) two levels so broad that they overlap. In fad, 
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the curve (P4-0.3P6)2 fits nicely the experimental points, indicating levels 
with / = 4 and I = 6.

The 12.6 and 13.6 MeV peaks have angular distributions resembling 
that of the 12.1 MeV peak. This points to levels with the same angular 
momenta, / = 4 and I = 6. For the 13.6 MeV peak the curve corresponding 
to (12) with a4 = 1 and a6 = —0.4 + 0.55 i tils the experimental points, if the 
70° point is disregarded. However, the distribution may be equally well 
fitted with (P4-0.7 P6 —0.1 P2)2. Therefore, it is not possible to conclude 
that only two levels contribute, there might also be a level with I = 2. 
For similar reasons, although the curve (P4-0.5 P6-0.15 P2)2 fits the 
12.6 distribution, it cannot be concluded that three levels contribute to 
the peak.

The second group of angular distributions, for the energies 14.0, 14.3 
and 14.6 MeV, cannot be filled with combinations of P4 and P6, but a P8 
must be involved. Since the distributions have no zero points, attempts 
were made to fit them with curves of type (11), but with little success. For 
the 14.6 MeV distribution a curve P82 + 0.5 P42 reproduces roughly the three 
maxima between 30° and 100°, but it is not considered to give a satisfactory 
fit to the points.

Attempts to fit the 14.9 and 15.3 MeV distributions by curves of type 
(11) or type (12) by using real coefficients were also unsuccessful. The 
15.3 MeV distribution seems to indicate a contribution from angular momen
tum of at least It), but due to the small cross section the uncertainties are 
rather large, and a too detailed analysis would not seem justified.

The last group for energies 15.9 and 16.3 MeV has distributions domi
nated by 1 = 8. Il may be mentioned that, although the 15.9 MeV peak 
shows a pure P82 distribution, it may nevertheless contain more than one 
level, if only all significantly contributing levels have / 8. The 16.3 MeV
peak must contain a level with / - 8, and besides that at least one more 
level with lower /, most probably / = 6. The asymmetry of the central (90°) 
peak for this energy is a most peculiar effect. If the reaction we observe is 
described by expression (1), no other particles or photons being involved, 
the distribution must be symmetric around 90°. For all other energies 
(except maybe 12.1 MeV, see Fig. 12) the distributions never showed any 
significant departure from symmetry, but for 16.3 MeV the asymmetry was 
observed in four different measurements using three different rods and 
pointers.

One may try to understand the excitation curve in different ways:
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1°. One may regard the peaks of the curve as being caused by individual 
levels in the compound nucleus. With the exception of the 15.9 MeV peak, 
each peak must then cover at least two levels, as discussed above.

2°. One may assume a somewhat larger number of participating levels 
and regard the peaks as being caused by statistical fluctuations in the level 
density. In some cases a peak may then correspond to one or a few strongly 
excited levels (for instance 15.9 MeV), bid in other cases to many relatively 
weakly excited levels. Even in the latter cases the angular distributions may 
be expected to be of the type found; in expression (12) a4 may stand for the 
sum of the coefficients of any number of levels with angular momentum 
Considering the influence of the centrifugal barrier in the C-C system one 
would, if many levels are involved in each peak, expect a gradual change 
of the angular distributions; when the energy is increased, more levels with 
higher I values will contribute to the distribution. This is just what has been 
observed. The 12.1 MeV peak is nearly described by P42, but a small admix
ture of P6 is needed to give an exact fit to the positions of the maxima. For 
12.6 and 13.6 MeV gradually larger admixtures of P6 are appropriate. For 
energies above 14 MeV levels with / = 8 begin to play a role.*  This result, 
especially for the energy region 12-14 MeV, seems to be strongly in favour 
of the many-level hypothesis. Other features of the curve in Fig. 10 support 
this way of looking at things. If each peak corresponded to only a few 
levels one would expect much stronger variations in the relative peak 
heights. Also, if the levels were so scant that each peak covered only two 
or three, one would expect more cases of single levels, i. e. pure Pz2 dis
tributions. However, the rather deep minima in the excitation curve show 
that the density of participating levels cannot be very high. In this connec
tion, it may be remarked that repeated careful investigations have shown 
that the cross section at 15.6 MeV is less than 2 °/0 of the cross section 
at 15.9 MeV. From considerations of the kind intimated above, the 
average spacing of participating levels may be roughly estimated to about 
40 keV.

* The Chalk River group has measured8) some angular distributions for the ground state 
a-particles from the inverse reaction in an energy range corresponding to 10-11 MeV in our 
scale. The distributions indicate rather low angular momenta and seem to vary rather smoothly 
with energy.

3°. A third point of view' may be mentioned. One might assume a very 
large number of weakly excited levels giving a general, low’ “background”; 
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the peaks on lop of it correspond to individual, strongly excited levels. The 
very small cross section at 15.6 MeV and the small variation in peak heights 
are in disfavour of this point of view.

These experiments were carried out at the Institute for Theoretical 
Physics, University of Copenhagen, and the authors wish to express their 
deep gratitude to the Director of the Institute, the late Professor Niels Bohr. 
In conclusion we thank mag. sc. N. O. Roy Poulsen for valuable discus
sions, Ing. Pu. Dam and Ing. A. Hedegaard for technical assistance.

Institute for Theoretical Physics,
University of Copenhagen, Denmark
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Synopsis
A theoretical discussion is given of the range of heavy ions with moderate 

velocity. The treatment is based on the theory of quasi-elastic collisions given 
elsewhere. The region where electronic and nuclear stopping compete is of par
ticular interest. Use is made of a simple velocity proportional Thomas-Fermi type 
formula for electronic stopping, and a universal approximate differential cross 
section for scattering. Simplified models of nuclear scattering assuming power 
law scattering are also included. They turn out to be useful for exploratory com
putations of various range quantities.

The straightforward theory of ranges is studied in § 2. Range curves are 
computed for any atomic numbers of particle Zn and substance Z2. It is found 
that when nuclear stopping is dominating, a q - e plot gives a universal range energy 
description.

Probability distribution in total range and various averages are studied 
(§ 3), in order to assess corrections to measurements when necessary. Similarly, 
corrections to measurements of projected ranges are obtained (§ 4). The range 
correction due to nuclear stopping is obtained for ions of high initial energy.

In § 5 a survey is given of numerous recent measurements of range. They 
are found to be in fair accord with theoretical results, for energies between 100 
MeV (fission fragments) and ~ 1 keV.
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§ 1. Introduction

The present paper is a theoretical study of ranges of heavy ions of low 
velocity, and their connection to the basic problem of quasi-elastic collisions 
between ions and atoms. Three characteristic features give rise to com
plications. First, both electronic and nuclear stopping must be studied 
thoroughly, because they are similar in magnitude. Second, because of the 
frequent large deflections of the ions one must distinguish carefully be
tween various range concepts. Third, the variety of choice of atomic number 
of both ion and substance gives an additional difficulty. We shall try to 
show that our present knowledge of quasi-elastic collisions, in spite of the 
above complications, can give us a simple and fairly accurate range theory. 
In point of fact, in the following we use a much simplified description of 
quasi-elastic collisions, which could be improved upon without difficulty. 
Aspects of quasi-elastic collisions are studied also in three associated papers: 
Notes on Atomic Collisions I, III, and IV. The aim is to exploit similarity 
properties of Thomas-Fermi type in collisions between heavy ions and atoms. 
In fact, similarity enables us to treat in a comprehensive way both slowing
down and damage effects by heavy ions.

The total range of a swift particle may be observed in track detectors 
like photographic emulsions. The observation of many tracks can then give 
the probability distribution in total range. In measurements of this kind the 
observed range depends on energy losses only, and not on scattering of the 
particle. For energetic heavy particles this separation of energy loss from 
scattering is especially valuable, since the two are due to unconnected pro
cesses, i. e. respectively electron excitation and Coulomb scattering by the 
atomic nuclei.

However, in nearly all other cases one observes somewhat different and 
less well-defined types of ranges. It is then customary to make corrections 
for multiple scattering in order to obtain the total range, but since these 
corrections are not insignificant—even in cases like high energy protons where 
deflections are small—it would seem appropriate to introduce explicitly these 
other types of ranges.

1*
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The scattering of a particle—in contrast to its energy loss—is always 
dominated by nuclear collisions, i. e. deflections in the screened electric 
field of the atom. In the case of electrons, large scattering angles are quite 
common during slowing-down. For heavy particles of high energy (e. g. 
protons with MeV-energies), scattering effects are relatively small, but since 
a high precision is desirable here, the distinction between different types 
of ranges again becomes important. Although the description in the following 
could be applied to electrons and to fast heavy particles, we shall aim at 
the case mentioned in the beginning of the introduction. In fact, for heavy 
ions of low velocity, e. g. v~vo = e2/h, scattering effects are large and the 
scattering can not be completely separated from energy loss, simply be
cause the nuclear collisions here begin to dominate the energy loss too. 
This somewhat complicated case will be used as a basic example in our 
general discussion of range concepts.

The following discussion does not at all pretend to give an exhaustive 
treatment of range concepts. Thus, we are throughout concerned with stop
ping by a random system of atoms, i. e. uncorrelated atoms and separated 
collisions. This might never seem to include stopping of a relatively slow 
heavy ion in a solid, where the interatomic distance is short and atoms are 
arranged in a periodic lattice. Still, the effects are only sometimes large; 
they are not well understood and appear to be dependent on the structure 
of the lattice (cf. § 5).

Before turning to the various—and often complicated—range concepts 
and range distributions, we may take a more straightforward point of view. 
In § 2 we proceed as if the energy loss along the path was a nearly con
tinuous process. This is not at all a poor first approximation. It both 
enables us to get a clearer picture of the essential points and permits com
parisons with experiments (cf. § 5).

§ 2. Simple Unified Range Theory

Suppose that the range along the path is a well-defined quantity, so that 
we need not distinguish between e. g. average range, most probable range, 
and median range. We may introduce first the simple concept of specific 
energy loss, (dEjdR),—or average energy loss perunit path length—defined by

dF
N ■ S = N\daT,

dR J 
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where N is the number of scattering centres (e. g. atoms) per unit volume 
and S the stopping cross section per scattering centre. Further, t/cr is the 
differential cross section for an energy transfer T to atoms and atomic 
electrons.

The basic range concept is then obtained simply by integration of (dE/dR), 

tK dE'____ 1 dE'
1 ) J0(dE7dR) NJoS(E')’ ( ' *

The formulations (2.1) and (2.2) give a simple connection between range, 
specific energy loss, and differential cross section. We do not at present 
distinguish between different types of ranges. A better understanding of the 
connection between (2.2) and e. g. the average range is obtained in the 
detailed discussions in § 3.

In an analogous way we may introduce the range straggling (cf. Bohr 
(1948)). Similarly to (2.1) the average square fluctuation in energy loss 
becomes

(ÂË)2 = NQ2dR = NdR^doT2 , (2.3)

if the individual events have average occurrence NdRda, and are uncor
related. We may next derive the average square fluctuation in range, (AR)2, 
using the present assumption that fluctuations are small,

z/1 m2 = (EdE'NQ2(E') = J. rEdE'-£E(E') 
( 9 Jo (dE'/dR)3 N2J0 S3(E') (2-4)

If we were precise, we would say that the interpretation of (2.4) as the 
average square fluctuation in range is not quite correct. For the present pur
poses, however, we have by means of (2.2) and (2.4) defined the range, 
R, and its fluctuation, AR, and the results are sufficiently accurate for most 
purposes. We now use (2.2) and (2.4) in a first study of the ranges of slow 
heavy ions.

Quite apart from using at first simple expressions like (2.2) and (2.4), 
it seems important—at the present stage of accuracy of theory and ex
periments—to be able to give a comprehensive description of slowing-down. 
It would for instance be futile to aim at an individual stopping curve for 
every one out of ~104 possibilities for the set of atomic numbers (Zx, Z2), 
where the suffixes 1 and 2 denote the penetrating particle and the atoms 
of the medium, respectively. If we are concerned with very high velo
cities, where the Bethe-Bloch stopping formula applies, the question of 
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dependence on Zx drops out because the stopping is simply proportional 
to Z2. In that case the dependence on Z2 is not far from being given by a 
Thomas-Fermi description, i. e. Bloch’s relation 1 = Z2-70, and only when 
high accuracy is demanded need we introduce deviations from the Thomas- 
Fermi results. Considering again the present case of comparatively low 
velocities, where the stopping is not proportional to Z\, it is very important 
that descriptions of a Thomas-Fermi-like character are introduced, even 
though the resulting accuracy might not be high.

In point of fact, we hope to show in this section, and in § 5, that a Thomas- 
Fermi-like treatment of the dependence on both Zx and Z2 has a quite 
satisfactory accuracy at the present stage of experimental precision. Our 
treatment should be based on a self-contained theory of the quasi-elastic 
collisions between ions and atoms. This theory will not be derived here; 
it is studied in two associated papers (Notes on Atomic Collisions, I and 
IV, unpublished). We shall merely summarize a few results of interest to 
us in the present connection (cf. also Lindhard and Scharff, (1961)).

Electronic stopping

It is well known that for penetrating charged particles of high velocity, the 
energy loss to atomic electrons is completely dominating. The corresponding stopping 
cross section per atom is denoted by .S'e, so that the specific energy loss is N-Se, 
where N is the number of atoms per unit volume. At high velocities Se increases 
with decreasing particle velocity and has a maximum for a velocity of order of 

2/3zq = i’o Zi - However, we shall consider low velocities only and in fact assume that 
0 < v < vi. In the whole of this velocity region simple theoretical considerations lead to 
velocity proportional stopping, and a Thomas-Fermi picture shows that (Notes on 
Atomic Collisions, IV; see also Lindhard and Scharff (1961)) 

2 Zi Z2 p
Se = ‘ 8 Tie C1q ' y ' 77 -z 2/3I) < I’i = l’o • Zf , (2.5)

where the constant is of order of Z^6, and Z2/3 = Z2/3 + z|/3. It is interesting that 
the approximate formula (2.5) holds down to extremely low velocities, i. e. also for 
v<<vo, in contrast to previous theoretical descriptions, where Se was assumed to 
vanish for p<z?o (cf. Bohr (1948), Seitz (1949)).

It should be emphasized that (2.5) is approximate in more than one sense. The 
constant in (2.5) is based on Thomas-Fermi arguments, and it is to be expected 
that fluctuations around this constant can occur, especially for Z1< 10*.  Moreover, 
a precise proportionality to v will not be correct over the whole of the velocity 
region v <v±. However, in the present context we shall not analyse electronic stopping 
in detail. As to stopping near the maximum p~p1, cf. Northcliffe (1963).

* The presence of such ionic shell effects is confirmed in the systematic measurements by 
Ormrod and Duckworth (1963), Wijngaarden and Duckworth (1962).
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Another important circumstance may be mentioned. The energy loss to elec

trons is actually correlated to the nuclear collisions, and in close collisions con
siderable ionization will take place. Although the correlations are fairly well known, 
we disregard them in first approximation and consider electronic stopping as a 
continuous process. The correlation may be of some importance especially in stragg
ling or higher order moments of the range.

Nuclear stopping and scattering cross section

A basic quantity is the nuclear stopping cross section, Sn. However, since the 
energy transfer in individual collisions can be quite large, the slowing-down by 
nuclear collisions cannot always be considered as a nearly continuous process. It 
is therefore important to know the differential cross section too. We shall here con
sider various approximations, of which the first one lends itself to a particularly 
simple mathematical treatment.

Suppose that there is a potential V(r) between the ion and the atom, such 
that V(r) = (ZiZ2e2 Qg^/s rs), with as «a a = 0.8853 a0 Z~13 (the number 0.8853 = 
(9 yr2)1/3 2~7/3 is a familiar Thomas-Fermi constant). It is interesting that then the 
classical differential scattering cross section may be obtained approximately from 
an extrapolated perturbation procedure (Notes on Atomic Collisions I), leading to 
the simple result

_Cn dT 
rpY—XIS zpl+l/s’ 
1 m 1

s>l, (2.6)

for an energy transfer T from the ion of energy E to an atom at rest. Here T< Tm = 
_ O

yE = E, Tm being the maximum energy transfer in the col
lisions. Furthermore, the constant Cn is connected to the stopping cross section Sn, 
and is approximately given by

C. S„, (2.7)

where the collision diameter b is equal to 2 Mqv2 , Mq = Mi M2KM1 + M2).
In the particular case of s = 1, i. e. simple Coulomb interaction, equation (2.6) also 
gives the correct Rutherford scattering, but in this case Sn in (2.7) does not represent 
the stopping cross section, the convergence of which is a result of adiabaticity in 
distant collisions.

As we shall demonstrate below, formulas of type of (2.6) are valuable for ex
plorative purposes, interesting values of s being 1, 3/2, 2, 3 and 4. The cross sections 
(2.6) are furthermore in accord with the Thomas-Fermi scaling of units. Corre
sponding to the case of s = 2, we shall sometimes approximate Sn by constant 
standard stopping cross section (similar to that quoted by Bohr (1948)),

= (ti2/2.7183) e2 00^1^2 Mi - Z-1/3 (Mi+ M2)“1. (2.7')

Beside the simple power potential we study the case provided by a screened 
potential, U(r) = (Zi Z2 e2/r) • <po (r/a), where <po is the Fermi function, and further
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2/3 2/3 _ 1/2a = ao 0.8853 (Zj + Z2 ) , which is a fair approximation to the ion-atom force.

Bohr (1948) has employed a similar potential, with exp (—r/afi) in place of <p0(r/a); 
however, an exponential function falls off too rapidly at large distances.

A screened Coulomb potential, involving only one screening parameter, a, leads 
for dimensional reasons to a natural measure of range and energy, for an ion col
liding with atoms at rest. In fact, we may introduce, respectively,

Mi
o = RNM2 • 4 7t a2 —-----77—5 ande (Mi + M2)2

aM2
E = E Zi Z2 e2 (Mi + M2) (2.8)

as dimensionless measures of range and energy. Note that e_1 is essentially the 
parameter £ used by Bohr (1948). The scattering in the screened potential, U(r), 
is obtained by means of the extrapolated perturbation method for classical scattering 
used in deriving (2.6), and one obtains a universal differential cross section

der = na2—/(Z1/2),2 /3/2 ' v " (2-9)

where t1/2 = £-sin(#/2) and & is the deflection in centre of gravity system. When 
elastic collisions are assumed, we find sin2(#/2) = (T/Tm), where 7' and Tm are the 
energy transfer and its maximum value, respectively, in a collision with an atom 
at rest. The function /(f1/2) is shown in Fig. 1. At high values of t it approaches 
the Rutherford scattering. In Fig. 1 is also shown (2.6) for the case of s = 2.

It may be noted that the power law (2.6) leads to f = fs, where
11

fs(t1/2) = 4-f2 % 0.3<Âs<l. (2.6')

In the above, we have at first considered approximate potentials representing the 
ion-atom interaction and next, in an approximative way, derived the scattering 
from the potentials. However, we shall in the following take a simpler and more 
direct point of view. We consider (2.6) and (2.9) directly as approximations to the 
true scattering cross section and disregard the connection to a corresponding po
tential. This is the more justified, since the scattering is only quasi-elastic and 
cannot in detail be described by a potential between two heavy centres.

From (2.9) and Fig. 1 may be derived the nuclear stopping cross section, by 

means of the formula (de/dg^ =\dx /(x) e-1. The result is shown in Fig. 2, together 
•'0

with the stopping from (2.6) for s = 2. Also the electronic stopping may be ex
pressed in Q — e units, and is then (deldo)e = k-E1/2, where the constant k varies 
only slowly with Zi and Z2, and according to (2.5) is given by

0.0793 Z}/2 Z2/2 (Ai + A2)3/2

(z2/3+z|/3)3/4 a3/2 a2/2
(2.10)

Thus, k is normally of order of 0.1 to 0.2, and only in the exceptional case of Z\< < Z2 
can k become larger than unity. If Zi = Z2, Ax = A2, the constant k is given by 
the simple expression k = 0.133 z|/3A2 1/2. A representative case of electronic stop-
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Fig. 1. Universal differential scattering cross section for elastic nuclear collisions, (2.9), based 
on a Thomas-Fermi type potential. At high values of f1/2 it joins smoothly the Rutherford scat
tering. The cross section corresponding to power law scattering (2.6), or (2.6'), with s = 2 is 

also shown.

cfe/cfç

/

s°°/7

/ 2. 3 4
Fig. 2. Theoretical nuclear stopping cross section in q - e variables. The abscissa is e1/2, i. e. 
proportional to v. The full-drawn curve is {de/dQ)n, computed from Fig. 1. The horizontal 
dashed line indicates (2.7'). The dot-and-dash line is the electronic stopping cross section, ke1!1,

for k = 0.15.
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Fig. 3. Universal range-energy plot for £<1, cf. § 2 and § 3. The curve Th.-F. gives ^(e), i. e. 
(2.2), as a function of e with neglect of electronic stopping. Curves for various values of the 
constant k in electronic stopping are also shown. Dotted straight line is the standard range, 

g = 3.06 e.

ping, k = 0.15, is shown in Fig. 2. Formula (2.10) applies for v<vi, or approximately 
e < 103. In the above we have for simplicity distinguished between electronic ex
citation and elastic nuclear collisions. This is not quite justified, since in close col
lisions there is a strong coupling between the two, i. e. the nuclear collisions are 
not elastic. In first approximation this need hardly be taken into account; the 
reader is referred to Notes on Atomic Collisions IV for a more detailed treatment 
of quasi-elastic collisions.

The nuclear scattering cross section is expected to be fairly accurate, but while 
shell effects should be of little importance, a systematic overestimate may occur, 
due to neglect of inelastic effects. A more thorough discussion is given in Notes 
on Atomic Collisions I. At low energies nuclear stopping dominates over electronic 
stopping (2.5). It must be emphasized though, that at extremely low £-values, 
£<10~2, the nuclear scattering and stopping becomes somewhat uncertain, be
cause the Thomas-Fermi treatment is a crude approximation when the ion and the 
atom do not come close to each other.

Range-energy relations

By means of the simple formula (2.2), and the above stopping cross 
sections, we are now able to estimate total ion ranges. Now, if we consider 
nuclear stopping only, and one screening length a in the scattering, the
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Fig. 4. The continuation at higher e-values of the ranges Q1(e) in Fig. 3, for various values of 
constant k in electronic stopping. Straight dot-and-dash line is hypothetical range without 

nuclear stopping and k = 0.1.

dimensional arguments leading to (2.8) apply, and in these units the range 
in (2.2), (), must be a function of e only, i. e.

Q = e(£)

for all ions and atoms. This formula holds both when (2.7) and when (2.9) 
is introduced in (2.2). The resulting range, based on (2.9) and /(f1/2) from 
Fig. 1 is shown by the solid curve in Fig. 3, for relatively small values of 
E. The particular approximation of s = 2, i. e. the constant standard stopping 
cross section in (2.7') and Fig. 2 leads to the straight line q = 3.06 £ in 
Fig. 3. This standard range is closely similar to the range formula used by 
Bohr (1948) and also by Nielsen (1956). For small e-values the numerical 
curve remains above the straight line and has a downward curvature, 
corresponding to the effective power of the potential being higher than 2, 
in fact of order of 3. The detailed behaviour of the range curve can be 
easily understood from the stopping curves in Fig. 2. If we use the straight 
line as a standard in Fig. 3, i. e. the horizontal line as a standard in Fig. 2, 
the range must at first be higher than the standard straight line in Fig. 3. 
Next, since the actual stopping rises above the horizontal line, the range 
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must drop considerably relative to the straight line, and actually fall below 
it. Finally, since the nuclear stopping becomes small in the high energy 
region with Rutherford scattering, the range must again increase above the 
straight line as may be seen in Fig. 4.

In this description we have so far omitted electronic stopping. This 
omission is justified at low energies because Se/Sn tends to zero for small 
velocities, but at higher energies it becomes less and less adequate until the 
range finally is dominated by the electronic stopping, as may be judged 
from the stopping cross section in Fig. 2. Let us therefore take electronic 
stopping into account and write

de 
dg (2.11)

where (de/dg^n is shown in Fig. 2, and the electronic stopping is assumed 
to be proportional to e1/2, i. e. we are concerned with moderate velocities, 
l><vi. We choose a number of representative values of the constant k, 
k = 0.05, 0.1, 0.2 and 0.4. Values of k between 0.1 and 0.2 are quite com
mon, according to (2.5). In Figs. 3 and 4 are shown the range curves for 
the above four values of k. The most conspicuous effects of electronic 
stopping are, first, that it leads to appreciable range corrections even at 
quite low s-values. Second, for £ large compared to unity, the reduction in 
range always dominates, so that the range never increases above the straight 
line g = 3.06 £, in contrast to the range with neglect of electronic stopping. 
In Fig. 4 is also shown the hypothetical range g = (2//c)e1/2, which would 
result if there were no nuclear stopping, in the case of k = 0.1 .

By means of curves like those in Figs. 3 and 4 we are able to compare 
or estimate ranges for all ions in all substances. But only for e-values below, 
say, e = 10 are curves for the various k-values fairly close together and 
easy to compare. For light ions in heavy substances deviations start at even 
smaller e-values, because k becomes quite large. Moreover, only for these 
low values are we able to check in a direct manner the nuclear stopping, 
which here remains dominating.

Although we may well use Fig. 4 for estimates of ranges when £>>10, 
we can in this case introduce a more critical comparison between theory 
and experiments. In fact, it is apparent from Fig. 2 that for high values of 
£ the range is mainly determined by the electronic stopping, and only a 
minor range correction is due to nuclear stopping which dominates at low 
values of £. Since nuclear stopping drops off quickly while electronic stopping 
increases, the nuclear stopping correction to the range remains fairly con-
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Fig. 5. Range corrections for nuclear stopping, (Zc/2) A(k, e), from equ. (2.12). Curves are shown 
for k = 0.1, 0.2, 0.4 and 1.6. Asymptotic values are roughly A -> 1.76 • Ar-3^2.

stant above a certain value of e. We then introduce an extrapolated elec
tronic range

, (,£ de' Ç£ de' l* £ (de'/d())n- de'
Qe £ \{de’ldQ)e \{de'/dp) + J0(de7dp)-(de'/dp)e (2.12)

= Q (e) + A (k, e).

The quantity A(k, e) can be computed from the above formulas, and adding 
A to an observed p(t), we obtain the extrapolated electronic range, which 
in our case of v<vi should be equal to pe = (2/Å-) e1/2 (cf. dot-and-dash line 
in Fig. 4).

The function A(k, e) is shown in Fig. 5 for À-values between 0.1 and 
1.6. This procedure is probably the most direct way of comparing theoretical 
predictions of electronic stopping like (2.5) with range observations. The 
point is here that A often is a relatively small correction, and in estimating 
the range correction A we may use (2.5), even if this formula be not too 
accurate. Examples of the application of (2.12) and Fig. 5 are shown in 
§ 5, cf. Figs. 14 and 15.
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Another circumstance may be noted in this connection. Since A tends 
to a constant at high e-values, we may moreover use (2.12), together with 
Fig. 5, for comparisons with measurements at high e-values, i. e. v>>v\, 
where, electronic stopping no longer increases proportionally to u, but in
stead decreases approximately as v to a power between -1 and -2.

In the present paragraph we do not make comparisons with actual range 
measurements, one of the reasons being that measured ranges require 
corrections of the kind discussed in § 4. Instead, we have presented these 
comparisons in § 5, where recent measurements are compiled. We do not 
discuss critically the accuracy of the measurements; this is perhaps un
satisfactory, because several new experimental methods have been applied. 
We merely make approximate and obvious range corrections, corresponding 
to the results in § 4. One result emerging from § 5 is that the theoretical 
nuclear stopping, as leading to the range curves in Figs. 3 and 4, for moderate 
e-values appears to be in good agreement with observations, perhaps within 
~20 percent. It should be noted that the theory is somewhat uncertain at 
quite low e-values, i. e. e< 10~2.

Beside the general experimental checking of the present range-energy 
relations there are several other ways of comparison. An immediate pos
sibility is to measure directly stopping powers, which has been done in a 
few cases, but mostly when electronic stopping dominates. We shall not 
enter more critically into these questions, since the theory of electronic 
stopping is not the topic of the present paper. Nor will we attempt a detailed 
discussion of individual inelastic collisions between energetic ions and atoms 
at rest. But it may be mentioned that more subtle comparisons of ranges may 
be made. For instance, isotope effects are quite informative, and can elucidate 
both electronic and nuclear stopping, cf. § 5.

Range straggling

The simple description used here, with a range along the particle path 
based on (2.2), may now be extended to include an average square fluctuation 
in range, given by (2.4). This description contains the assumption that range 
fluctuations are relatively small. We may suppose that the fluctuations 
around the average correspond nearly to a Gaussian. In fact, if this were 
not so, the distribution in range would have a sizable skewness. Then we 
would have to distinguish between e. g. the most probable and the average 
range, and the simple relation (2.2) would have to be revised. Still, even 
in such cases the results in the present paragraph may be useful. We can 
in fact consider the present ranges, i. e. (2.2) as an approximation to the
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Curves are shown for several values of constant k in electronic stopping.

average range, and similarly consider the present range fluctuation, i. e. 
(2.4), as an approximation to the average square fluctuation in range. These 
averages are defined irrespective of the skewness of the distribution; they 
are studied in more detail in § 3, where also the accuracy of the present 
treatment is discussed more closely.

It is convenient to consider the relative square straggling in range, 
(Zl{>/@)2 = (AR)2/R2. Consider first nuclear stopping only, and in particular 
the power potentials represented by (2.6). Then we easily find

MeV 1_
\Q ) s(2s- l)7’ (2.13)

where y = 4MxMzKMi + M2}2. We thus obtain the extremely simple result 
that the relative straggling is independent of the range itself. It is moreover 
interesting to note that the result (2.13) is rather insensitive to s in the neigh
bourhood of s = 2. When s increases from 2 to 3 the relative square straggling 
decreases by only 20 percent. Thus the simple model predicts that at low 
energies (d@/@)2 should be of order of y/6 (cf. also Lindhard and Scharff 
(1961), Leachman and Atterling (1957), Harvey (I960)). We have here
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Fig. 7. Absolute straggling in range at high values of e. Saturation values of the straggling 
are indicated.

considered the application of (2.6) to the simple formulas (2.2) and (2.4). 
A more detailed study of the probability distribution in range is made in 
§ 3, on the basis of the power law scattering (2.6). It is shown there that 
the right hand side of (2.13) is only the first term in a power series expansion 
in y.

We next apply the numerical Thomas-Fermi-type cross section (2.9) for 
scattering in nuclear collisions. We do this at first with neglect of electronic 
stopping, and by means of (2.4) we compute (Zlp/@)2-y“1 against e, as shown 
by the upper curve in Fig. 6. The relative straggling is seen to behave as 
expected from the simple power potential. Next, we include electronic 
stopping, using (2.5) and assuming that the contribution to straggling from 
electronic stopping is negligible*.  Clearly, it must lead to a reduced relative 
straggling. The results are shown in Fig. 6, for k = 0.05, 0.1, 0.2, 0.4 and 
1.6. At e-values around 1 to 10 a considerable reduction in the relative 
straggling sets in. The reduction corresponds to the circumstance that in this

* This assumption can be questioned, since quasi-elastic collisions imply a correlation be
tween the two types of energy loss, i. e. nuclear and electronic stopping. The assumption re
quires that a considerable part of electronic stopping occurs at impact parameters where recoil 
of the atom is small or moderate. 
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region electronic stopping has become quite dominating, and the absolute 
value of the square straggling, (zip)2, does not increase much beyond this 
point. For high c-values it is then convenient to consider the absolute value 
of the range straggling. The corresponding curves are given in Fig. 7, for 
various values of k. We therefore conclude that accurate measurements of 
straggling in range at high energies, where the electronic stopping does not 
at all correspond to (2.5), may give information about the predicted values 
of k, as given by (2.10).

The above treatment of simple ranges and range straggling is intended to be 
fairly comprehensive, and from the accompanying curves it is easy to obtain rea
sonable estimates of these quantities for any value of Zlf Ai, Z2, A2 and v. How
ever, we have disregarded completely those cases where the substance contains 
several atomic elements, Z2^, Z22), etc., in given ratios. In all such cases, the nuclear 
stopping contribution from each element may be derived from the solid curve in 
Fig. 2, with a rescaling of units. The electronic stopping contributions are obtained 
from (2.5) or (2.10). The resulting ranges can be derived by numerical integration. 
However, considerable simplification occurs in an energy region where, e. g. the 
stopping cross section SW, due to any atomic component i, is proportional to the 
same power of E, because in this case straightforward computations of averages may 
be made. For two components, a and b, we have R = RaRb(Rb^a + Ra (1 - æa))_1, 
where Ra and Rb are the ranges in a and b, and xa and 1—are the relative 
abundances of a and b. Similar procedures may be used in the case of straggling 
in range.

§ 3. Distribution in Range Measured Along the Path

In the present chapter we shall try to go one step beyond the treatment 
in § 2, where only a simple range straggling was considered, and where it 
was tacitly assumed that straggling effects were small. We wish to check 
the validity of this picture and also to extend it. A basic reason for the 
extended treatment are the large fluctuations, known to result from encounters 
between slow heavy ions and atoms. We therefore attempt to study the proba
bility distribution in range measured along the path. Although this distribution 
is much simpler than the distribution in space of the endpoint of the path, 
it is not easily obtained. One might perhaps employ Monte Carlo methods*  
for the solution of representative cases, but we shall limit the treatment to 
typical and simple approximations, and in particular consider the power law 
scattering cross sections given by (2.6).

Consider again a particle (Z}, At) with energy E, in a medium (Z2, A2).
* Monte Carlo methods were applied by e. g. Robinson, Holmes and Oen (1962) to various 

models of nuclear scattering, but with neglect of electronic stopping, cf. also Holmes (1962).
Mat.Fys.Medd.Dan.Vid.Selsk. 33, no. 14. 2 
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We denote by /? the range measured along the particle path, i. e. the total 
distance traversed by the particle. Let p(R, E)dR represent the probability 
that the particle has a range between R and R + dR, so that

/»OO /» GO

\ p (E, R) dR = 1 and < Rm > = \p (E, R) Rm dR . 
•'o *o

An integral equation for p (E, R) may be derived as follows. Suppose that 
the particle with energy E moves a path length ÔR in a medium containing 
N atoms per unit volume. There is then a probability NöRdon e for a col
lision specified by energy transfer ' Tei to electrons (electrons labelled 

i
by suffix i) and by an energy transfer Tn to translational motion of the 
struck atom. The particle will thus have an energy E- Tn-^ Tei. If the col- 

i
lision takes place, the particle has a probability p(R-ôR, E- - JS Tei) 

i
of obtaining the total range R. Multiplying by the probability of collision, 
NôRdon,e, we get the contribution from this specified collision to the total 
probability for range R. We next sum over all collisions. There is left a 

probability 1 - N ôR\d on e that no collision occurs. In this event we clearly 
get a contribution (1 - NÔR^don ^-pÇR-ôR, E) to the total probability for 
the range R.

Collecting the above contributions we have an alternative expression 
for p (R, E),

p (R,E)-NåR\ </<r„ ,p(fi-»R, E - Tn - VT,()
* i

+ (1 - NôR^don 0 • p(R-ôR, E),

and in the limit of 0R^>(),

dpp-p-- -N S(7i> E ~T- ~-p E) i ■ <3J ’
which expression constitutes the basic integral equation governing the pro
bability distribution in range along the path. In the remainder of this chap
ter we study the integral equation (3.1) and its consequences, using a num
ber of approximations. We shall not further elaborate on the derivation of 
(3.1), but it may be noted that the formal limit of ÔR-+0 corresponds to 
separability between consecutive collisions. If there is no separability, the 
equation still holds, or may be easily amended, as long as collisions with 
moderate or large T-values remain separable.
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Besides separability we have assumed that successive collisions are not correlated. 

This holds if the atoms in the substance are in fact randomly distributed, or if e. g. 
impact parameters corresponding to sizable deflections are extremely small com
pared to interatomic distances, giving effectively uncorrelated events. A system 
where collisions are separated and uncorrelated may be termed a random system 
of atoms. The derivation of (3.1) is based on a random system, and we limit our 
treatment to this case. A solid with periodic lattice is for many purposes a random 
system, but at low ion energies deviations from (3.1) can occur. These deviations 
contain directional effects and are sensitive to lattice structure, cf. p. 32.

On the assumption that energy losses to electrons are small and sepa
rated from nuclear collisions, we obtain

- JV j (R, E - T,) -p (R, E) } 

-M(E)^/>(R,E),
(3-2)

which formula is somewhat less general, but applicable to our previous 
cross sections for scattering.

We may rewrite (3.2) on the assumption that the Thomas-Fermi-like 
scattering formula (2.9) applies (note that this also includes (2.6) and (2.6')), 
and then introduce the variables q and e. We readily obtain

(3-3)

where n^Q, e)(1q is the probability that a particle with energy parameter e 
has a range between q and g + dp, and where y = ^M1M2l(Ml+M2)2. We 
have seen that in a wide region (p<p1, i. e. roughly e<103), one may write 
(d£/c/p)e = k-E1/2. In equation (3.3) we then have two parameters, k and y.

A simple approach to the study of the integral equations (3.1), (3.2) or 
(3.3) is to obtain from these equations the moments < Rm > , whereby—at 
least in principle—the probability distribution itself may be determined too.

From (3.1) we obtain directly, when multiplying by Rm and integrating 
by parts

m</?m“1(E)> =

.V j d<7„,, R” (E) > - < R” (E - 7'„ 7’d) >}. (3-4)

2*
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Similarly, if (3.3) holds we arrive at a somewhat simpler relation

By means of equations (3.4) or (3.5) we may successively derive the first, 
second, etc., moments of the range. In the resulting formulas the equations 
(3.4) are applied, because they have a wider applicability. In actual evalu
ations, however, we turn to (3.5), and to the analogous reformulations of 
(3.6) to (3.13) in q - e variables, although the reformulations are not ex
plicitly stated. Let us ask for the average range Ë(E) = < > . Ac
cording to (3.4)

1 (3.6)

An obvious procedure in solving (3.6) is to make a series development in 
powers of T = Tn+ TH. This approximation might seem poor when 

i
because E—T can then take on any value between E and 0. 

However, we can profit from the circumstance that the energy transfer to 
electrons, Tei, is normally quite small, and that the nuclear scattering

i
cross sections (2.9) are strongly forward peaked, since f (f1/2) E3/2 decreases 
approximately as t to a power between -1 and - 2. We shall presently 
look into the accuracy of the various approximations.

Take at first only the first order terms in the brackets and denote the 
corresponding approximation to average range by R± (E). We obtain from (3.6)

dRi(E) = 1 - dE'
dE NS(E)’ ' J0MS(E')’ (3.7)

where S(E) = Sn(E) + Se(E) is the total stopping cross section. The formula 
(3.7) is exactly the straightforward equation (2.2) used in § 2.

Similarly, we can include higher order terms from (3.6),

1 _jVS(E)^fi(E)-l^ß2(E)^ß(E) +  (3.8)

where the quantity ß2(E) = >eT2 is related to the straggling. If we in

clude only the second order term we obtain a second order differential
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equation which may be solved directly. Still, since the second order term 
may be considered small, we may express the second derivative by means 
of This leads to B2(E), the second approximation to average range

S2(E)-jE dE' I
0WS(E')i

, , ^2(E) q i 11
dE-l.S(E-)^' (3.9)

The average square fluctuation in range, d R2(E) = R2(E) - R2(E), is 
obtained from the second moment in (3.4), if we multiply (3.6) by 2Æ(E) 
and subtract

j Jd R2 (E) - d R2 (E - T,-Z T„) } -

jj daniJR(E)-R(E- Î’.-Z7-«)} •
(3.10)

In this equation the right hand side is a known source term. If we take 
the same successive steps as in the computation of q , we make a series 
development in (3.10), in powers of T. The first terms on both sides of the 
equation lead to the approximation (dfi2)i,

S(E) ^(d R2)1 - fi!(E)(^fi (£)[, (3.11)

where for R(E) we should use the first approximation, R1(E). Therefore, 
also (3.11) brings us back exactly to our previous assumptions in §2, in 
this case to (2.4).

Including terms in (3.10) up to second order, we get

S(E)^(dR2)-£2(E) d2
2 dE2 (AR2) =

’o2 K(E)d^
2 dE

(3.12)

where K(E) = \daneT3. When assuming the new terms in (3.12) to be J ___
small, we obtain the second approximation to (AR2),

d Q2 (E) I / K 5i22\dS 1 dQ2\
dE^H S3(E)N2[ +\Q2S 2S2)dE + 2SdEj (3.13)

By means of the expression (3.13) we are able to estimate the accuracy of 
the straightforward formulas (3.11) and (2.4). It is important to notice that
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Table 1
Comparison of first and second approximation of expansion in y, for power law 

scattering. Results for average range and range straggling.

s R2/R1 (d 7?2)2/(d 7?^

3/2 ... 1 t-y/24 1 E y-0.10
2......... 1 1 + y/6
3......... 1 -y/15 1 +y-0.14

the successive approximations made above are simply series expansions of 
average range and straggling to successive powers of y = TmfE.

It is of interest to compare the above approximations. For simplicity let 
us consider low energies and disregard electronic stopping. Since electronic 
stopping here tends to diminish fluctuation effects, we obtain in this way 
slightly exaggerated differences between successive range approximations. 
Moreover, we use power law scattering cross sections (2.6) or (2.6'). This 
permits exact computation of B(F'). Note that according to (2.6) the ranges 
are proportional to E2ls, while the square straggling in range behaves as 
Ei/S. We may compare P15 7?2 and R, and similarly (dß2)1, (d/î2)2 and 
zl R2. The results depend on y, i. e. on the mass ratio. For small values of 
y, a series development in powers of y is accurate. Since y is often close to 
its maximum value, y = 1 , we also compare the approximations in this 
case. The results arc listed in Table 1 (y<< 1) and Table 2 (y = 1), in the 
cases s = 3/2, 2 and 3. Notice that at low energies values of s between 2 
and 3 are of particular interest.

In the approximation used in Table 1 the range R2 and its fluctuation 
(dZ?2)2 are equal to the exact average values R and AR2, respectively. From 
Tables 1 and 2 it is apparent that jR2(B) is always a very good approximation 
to R(E), and one need not distinguish between the two. The range Ri(E) 
is somewhat less accurate, but deviates from R(E) by no more than 10 per
cent in the least favourable case (y = 1). In actual range observations the 
deviation is reduced by electronic stopping and by the change in effective 
s with particle energy. There remains a difference between 7?i and R only 
at the lowest values of e. For our present purposes where all range curves 
(e. g. Figs. 3 and 4) are stated in terms of Ri(E) we need hardly distinguish 
between R^E) and R(E), be cause of obvious uncertainties in theory and 
experiment. Still, one might ask why the range curves are computed for 

in place of R2. This is simply because a universal range curve would not 
result when R% is used.
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Table 2
Comparison of first and second approximation with exact formula when y = 1. 

Average ranges and range straggling for power law scattering.

s R/Ri P/^2 (d (d P2)/(d JP)2

3/2......................... 1.053 1.01 1.03 0.94
2 1 1 1.20 1.03

3............................. 0.904 0.97 1.26 1.10

The straggling approximations (J /?2)x and (d/?2)2 are, as a rule, a little 
smaller than ZIP2 when y = 1. This deviation becomes quite pronounced 
if instead we consider the relative straggling in range. Thus, in the extreme 
cases of s = 3 and y = 1 we have (d P2)i/7?2 = 0.133 according to (2.13), 
while Z1P2/P2 = 0.20 for y = 1 and 2<s<3. At quite low values of e, and 
y = 1, the straggling in Fig. 6 is therefore somewhat lower than the straggling 
in average range; still it is noteworthy that the electronic stopping has a 
considerable influence on straggling also for quite low values of e. We infer 
moreover that the absolute values of range straggling in Fig. 7 are expected 
to represent AR2 quite accurately, i. e. they are superior to the relative 
straggling values in Fig. 6. Note that the deviations are only important when 
y = 1 . The outcome of the discussion in the present chapter is therefore that 
the simple quantities Rr and (Zl J?2)i, introduced already in §2, are satis
factory estimates of average range and average square fluctuation in range.

Results for power law scattering

In the interesting case of power law scattering, (2.6'), the formula (3.3) takes 
a particularly simple form if electronic stopping is neglected. In fact, we then obtain

~ P(r,E) = ( ~^y,{(i - yy)~2/s P(r ■ [1 - yy] 2/s, ■ [1 - yy]) - T(r,e) }, (3.13) 
dr Joyi+1/S

where r = (2ye2/s)_1 and P(r, e)dr = 1. If the power law holds down to zero
energy, equation (3.13) permits us to choose P(r, e) independent of e, and an ex
tremely simple recursion formula is obtained for the moments of the distribution,

0-(’-r!/)2”"}iï7î7ï- <314> 
0 »

The moments therefore only depend on one parameter, y, for any given power law 
scattering.

This result, where virtually the whole range distribution is determined im
mediately for any energy when merely the power s is stated (and y is known), is 

m <rm~ 1 > = <rm > • I (y, m, s), I (y, m, s) =
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clearly a direct consequence of universal cross sections, /(f1/2). In a more qualitative 
sense, it is apparent that if at one particle energy a cross section is given as a function 
of TITm = sin2#/2, this cross section leads to a certain ion-atom potential from 
which the scattering at all lower energies may be derived. This circumstance is 
expressed in an approximate way by the unified cross section, (2.9), and the results 
happen to be analytically simple for a power law cross section.

The integral 7(y,m,s) may be expressed by means of the incomplete beta 
function (cf. Erdélyi et al. (1953)),

I (y, m, s) = -s {1 — (1 - y)2m/s\ _|_ 2 my1/*  By î 1 — (3.15)

and is particularly simple when y < < 1, in which case a power series in y converges 
rapidly,

7 (y, m, .s)

y2 s-1
+ T~2 Ô----, (2 m - -s) (m - s) +3 s2 3 s - 1

, y < < 1.

(3.16)

An interesting case is also y = 1, where the incomplete beta function in (3.15) be
comes the usual beta function Bi(p,q) = r(p) r(q)/r(p + q).

The results in (3.14), (3.15) and (3.16) were used in Tables 1 and 2 for the com
putation of the first and second moments in various approximations. It is easy to 
derive also higher moments.

§ 4. Projected Ranges and Associated Quantities
Average projected range

An interesting quantity appears to be the projection of the range on the 
initial direction of the particle path. This quantity is often observed directly. 
Thus, one might be concerned with a collimated beam of particles passing 
through a number of foils perpendicular to the direction of the beam; the 
number of particles collected in each foil gives just the distribution in range 
projected on the initial direction of the beam. We may, in fact, define the 
concept of projected range as follows. A particle starts inside an infinite 
homogeneous medium from the origin in the direction of the .r-axis; the 
value of r for the end point of the path is the projected range, Rp. The 
distribution in x is the distribution in projected range. Quantities of particular 
interest here are the average projected range, Rp = Rp(E), and the average 
straggling in projected range, A Rp = R^-R2p.
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An integral equation for the average projected range may be obtained 
in analogy to the derivation of (3.1). We find readily

1 - -N jj ^n.e 'A (E) - Ä, (E - T) COS (?), (4.1)

where T = Tn+^\ Tei, and is the deflection of the ion in the laboratory 
i

system. There is a close similarity to the integral equation (3.6) for the 
average range, the only difference being the factor cos cp in (4.1).

Let us consider some approximations which can be useful in solving 
(4.1). If always T<<E, i. e. y<<l, or if Rp is nearly proportional to E, 
we may write

1 = Hpl(E)N^<TW)e(l - cos (p) + ^^^N^d(Jne- T-cosip. (4.2)

This approximation is similar to the one for Rx in (3.7) and (2.2), and we 
therefore use the notation Rpl for the projected range in (4.2). Actually, if 
the deflection <p may be neglected, we obtain (dRpl/dE) = N-S, i. e. Rpl 
becomes equal to R±.

When solving (4.2) we can introduce the familiar transport mean free 
path, 2{r, and a transport stopping cross section, Str,

= 2vÄ</<T„ e(l — COS Ç?), Str = \d°n,e T COS (p
Atr •' •'

With this notation, equ. (4.2) becomes

1 Rpi (-E) dRpi (E) $
1_Âlr(E)+ dE

which equation (4.4) has the solution

R (E} f dE- exJf___ _____I'1’ )0MS„(E') Pi.l£llr(E--)N-S<r(E")

and this result should be a good approximation to Rp(E) if y is small, or 
if Rp is nearly proportional to energy. We may solve the equation for Rp 
in the lowest approximation. This corresponds to taking the leading term 
in a series development in pi = M2lMlt assuming pi to be small. The ap
proximation is similar to that in § 3, for y << 1. In the limit of small pi, the 
angle <p is always small and we need only include çAterms in (4.3). Using

(4-3)

(4-4)

(4.5)
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Fig. 8. Correction for projected ranges (ö,-Qpdl~Qpi = /iy>, to first order in the mass ratio 
fi = Curves are shown for pure nuclear stopping and for three values of electronic

stopping parameter k.

the nuclear scattering cross section (2.9) and electronic stopping (dejdQ)e = 
Tc’fi1/2, we have computed the first order correction from average projected 
range to average range along the path. The resulting curves are shown in 
Fig. 8, for various values of k, and also for pure nuclear stopping.

It is more difficult to obtain accurate approximations to Rp when ii is 
large, corresponding to large angles of scattering, (p. We use the approximate 
equation (4.5) and profit from the circumstance that Rp is not far from being 
proportional to energy. By means of (2.9), solutions were obtained for // = 1 
and /z = 2, and a few representative values of the electronic stopping para
meter k. The results are shown in Fig. 9.

The power law approximation of nuclear scattering, (2.6), with neglect 
of electronic stopping, permits accurate solutions for Rp. We utilize the cir
cumstance that Rp^Ei,!. As an example, we consider the useful case of 
s = 2. The exact solution of (4.1) and (3.6) leads to (Lindhard and Scharff 
(1961))

= _3zz + (5+zz)y^arccosf7^^ = 1+1^’ s = 2- <4-6)
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Fig. 9. Approximate curves for Q^Qp-y for large values of the ratio jj. = M<JM Y and a few values 
of k.

As may be seen from Fig. 8, the rule-of-thumb R/Rv = 1 + /z/3 is a fair 
approximation at low energies.

As a further example we may quote the value of R/Rp for small lu, and 
any value of s,

(4.7)

which approximation is quite accurate up to /z~l.

Associated range concepts

The average projected range is determined by one closed equation. 
However, the equations governing the higher moments of the projected 
range are far more complicated. If we treat the average square of the pro
jected range, Rp, we must also introduce the average square of the range 
projected on the plane perpendicular to the initial direction, R%. The average 
square of the distance between the starting-point and the end point of the 
path is then R% = R^+R^. We may describe Rc as the chord range (also 
referred to as vector range). These range concepts are illustrated in Fig. 10.
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Fig. 10. Sketch illustrating definition of range concepts R, Ry, Rc and R±.

The integral equations for R? are derived in a similar way as (3.1). The 
following two equations are obtained, after rearrangement of terms,

(4.8) 

2/!p(E)-lvjdo„,e®(E)-(l-?sin2^Bä(E-T)|, (4.9)

where

= and . (4.10)

The two equations (4.8) and (4.9) may be solved separately, and then R% 
is found from (4.10).

First order solutions of (4.8) and (4.9), for /z<< 1, can be obtained in 
a direct manner. However, we shall merely consider the case of power law 
scattering, with neglect of electronic stopping. The exact solutions may then 
be expressed as beta functions. In Table 3 we quote the results for /z = 1 
and various values of s. It is seen that in these cases AR% is of order of AR2.
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Table 3
Straggling in projected range for power law scattering and /* = 1.

s 3/2 2 3

ARt/AR1,, . 1.25 1.33 1.38

■■■ 0.204 0.275 0.341

§ 5. Comparison with Experiments

As an illustration of the connection to experiments, we present a brief 
survey of recent experimental results, interpreted on the lines of the theory 
of this paper. Before that, it may be worth-while to summarize briefly and 
comment on the salient features of this theory.

A primary result is that a simple-minded theory of ranges and their 
fluctuations, as described in § 2, is quite accurate and that corrections of 
various kinds for projected ranges, etc., may be made without much dif
ficulty, if necessary. A second result, somewhat independently of the details 
of the theory of collisions, is that a q - e plot is useful for a study of ranges 
of particles with eclOOO, and particularly for 10. A third result is that 
for any ion of high energy a range correction, A, for the effect of nuclear 
stopping has been obtained, which permits a more accurate study of elec
tronic stopping. Fourth, e. g. various isotope effects can serve to check 
several details of the theory, as may also observations of range straggling.

A theoretical result of special interest is that for ZY = Z2 the electronic 
stopping constant is &~0.15, except when = 1. Therefore, the range 
energy curve for Zv = Z2 should be closely a single curve in a p — e plot. 
However, the corrections for e. g. projected ranges are not negligible in 
this case.

The numerical results computed here are based on a much simplified 
model of collisions. It is certainly possible to introduce a more detailed 
description of the collisions (cf. Notes on Atomic Collisions I and IV), and 
thereby improve on the present theoretical results. However, it may be more 
important to remove uncertainties and to correct misconceptions in the theory 
by measurements of range and stopping.

Another important circumstance is that direct comparisons with measured 
ranges may be made preferably in gases, where successive collisions are 
uncorrelated. In several respects stopping in solids may also answer the 
purpose, but experiments at low ion energies clearly seem to indicate the
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Fig. 11. Comparison between theoretical curves for ^j(e) given by (2.2), (2.9), (2.10) and (2.11), 
and measurements for e < 2. As indicated on the figure, numbers 1, 2, 3, 4, 5 and 6 refer to stopping 

gases II2, D2, He, N2, Ne and A, respectively. For further comments cf. text.
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kind of correlation of collisions described as tunnelling (cf. Piercy et al. 
(1963)), with strong directional effects and range lengthening in certain 
crystal structures. Although these range effects are in themselves highly 
interesting, their special character make them less suited in a general first 
comparison between range theory and experiments. In e. g. amorphous 
solids the effect appears to be absent, as was to be expected.

It should be appreciated that in the following we have merely made a 
compilation of measurements; not all of them are plotted in the figures. 
We are not in a position to make any critical examination of the experiments, 
some of which are in mutual disagreement or obviously inaccurate. We 
have included primarily the more recent measurements. A review of previous 
observations is given by Harvey (1960). We are mainly interested in ex
periments where nuclear stopping is dominating, and do not discuss electro
nic stopping. Northcliffe (1963) has given a valuable survey of measure
ments on stopping in the energy region just above the one considered here, 
i. e. when electronic stopping dominates and goes through a maximum.

In plotting the results we have made approximate corrections for pro
jected ranges, etc. Normally, the range measurements are plotted directly 
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on the ligures, and range corrections are indicated by arrows. In some cases 
our knowledge of the measurements was too scanty to permit a range cor
rection. As a general rule, we have corrected for projected ranges, etc., only 
if the correction exceeds ~10 percent.

Fig. 11 shows the theoretical range curve for values of e smaller than 2, 
where nuclear stopping is quite dominating. The ranges for pure nuclear 
stopping are given by the upper solid curve, denoted as Th.-F. on the figure. 
A curve for exceptionally large electronic stopping, i. e. k = 0.4, is also 
shown. The actual Å'-values are quite small, and thus the expected ranges 
should be close to the Th.-F. curve. Further, note the dashed straight line 
corresponding to range proportional to energy, q = 3.06e. It should be 
emphasized that for extremely low energies, e~ IO-2, the theoretical curve 
is not too well-defined.

Harvey, Wade and Donovan (1960) observed projected ranges for 
At205 and At207 ions in bismuth. The At recoil ions were produced by a-bom- 
bardment of a bismuth foil, leading to an (a, xn) process. This resulted in 
At ions with various energies between 400 and 900 keV; the energies were 
not sharply defined. Approximate corrections for projected range are shown 
by arrows in Fig. 11. The observations of Harvey, Wade and Donovan 
are in satisfactory accord with the predicted ranges.

Powers and Whaling (1962) studied projected ranges of monoenergetic 
ions of nitrogen and inert gases in several solids. The depth of penetration 
of the ions was obtained from a subsequent analysis of the distribution in 
angle and energy loss of protons scattered from the ions imbedded in the 
target. The ranges of Powers and Whaling are generally in good agreement 
with the theoretical curves. In the figure, we have included only their range 
measurements for Xe in Be and in Al. The corrections for projected ranges 
are quite small and are omitted. The ranges in Al may be compared with 
those of Davies et al. in Fig. 12. These two range observations for Xe in Al give 
quite different results and are placed on either side of the theoretical curve.

Valyocsik (1959) made accurate observations of ranges of Ra224 and 
Th226 recoil atoms with, respectively, 97 and 725 keV energies. Ranges are 
measured in gases using the electrostatic collection technique of Ghiorso 
and Sikkeland. Ranges and range stragglings were observed in deuterium, 
helium, nitrogen and argon, and in hydrogen and neon (only for Ra ions). 
The observations are shown in Fig. 11. They are in good agreement with 
theory (between 0 and 20 percent below theoretical ranges), and correspond 
to k = 0.12, except in hydrogen where k = 0.16.
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Fig. 12. As Fig. 11 ; measurements of median ranges by Davies et al. in Al. Ranges at low energies 
exceed theoretical curves, probably as an effect of tunnelling in crystal lattice.

A few measurements by the Copenhagen group (Sidenius, private com
munication) are also included in Fig. 11. The projected range of Au198 ions 
of energy 50 keV is measured by electrostatic collection. The correction for 
projected range is negligible. The ranges are slightly above theoretical curves. 
The ^-values are as in Valyocsik’s measurements.

Davies et al. (1960, 1961 and private communication) have observed 
projected ranges in Al, for the following ions: Na24, A41, K42, Rb86, Xe133 
and Cs137. Monoenergetic radioactive ions of energies between 1 keV and 
2 MeV enter a polished Al surface. Thin layers of Al are removed suc
cessively by electro-chemical means and the residual activity is measured. 
In this way the distribution in projected range is obtained. The range values 
of Davies et al. in Fig. 12 are median ranges. At the higher energies there 
is good agreement with theoretical curves.

The measurements by Davies et al. were made with polycrystalline Al. 
It has turned out that the structure of Al is such that tunnelling of the ions 
may occur, whereby the average range becomes considerably larger than 
for a random system, and the range distribution has an exponential tail 
(Piercy et al. (1963)). The results of Piercy et al. for Kr85 in Al and A12O3 
at 40 keV are compared with theoretical estimates in Table 4. There is
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Table 4
Ranges (in /zg/cm2) of 40 keV Kr85 in Al and A12O3, and average square straggling in 
range. Experimental results by Piercy et al. Computed results (columns 3 and 5) 

are for random system, as indicated.

pined 
exp

D
exp

D
rand ^Rf2,and

Al...................................... 9.0 11.5 7.1 91 4.6
A12O3............................... 7.7 7.7 6.5 7.8 3.5

satisfactory agreement in the amorphous substance AI2O3, both as regards 
ranges and straggling. It appears also from Table 4 that the experimental 
median range in Fig. 12 is probably somewhat larger than the average ranges 
of a random system of Al atoms. We therefore infer that the results of 
Davies et al. in Fig. 12 are not in contradiction to the theoretical ranges 
of a random system. Note the very large experimental range straggling in 
Table 4 for Al, characteristic of an exponential distribution, where A R2 =R2.

There are several other measurements in the regions of energy cor
responding to Figs. 11 and 12. Thus, Baulch and Duncan (1957) obtain 
ranges of a-recoils (e/$0.1) from 0 to 10 percent below theoretical curves. 
The results of van Lint et al. (1961) are at the higher energies at least about 
a factor of 2 above theoretical expectations, while at lower energies (t ~0.04) 
agreement is fair. However, these measurements show a very considerable 
scatter. Guseva, Inopin and Tsytko (1959) measured ranges of mono- 
energetic Si30 ions in Ta and Cu backings, at energies between 10 and 
25 keV. The depth of penetration was estimated from proton energies 
necessary for a (p, y) process, together with knowledge of proton stopping. 
Their results are about a factor of 2 above the theoretical curves.

Fig. 13 shows some observations for Ice <100, and corresponds to 
Fig. 4 in § 2. We are here in a region where the electronic stopping begins 
to take over. It is then important to know the value of the constant k. Some 
of the projected ranges observed by Powers and Whaling (1962) are shown 
in Fig. 13, including one where the ratio p = (M2/M1)~2, i. e. the corrections 
for projected range are large. The agreement with theoretical curves is good.

Winsberg and Alexander (1961) and Alexander and Sisson (1962) 
measured projected ranges for Tb149 ions in aluminium, at energies be
tween 4 and 30 MeV, and for At and Po ions in aluminium and gold, at 
energies between 3.5 and 13 MeV. The projected ranges and the range 
stragglings were obtained from the activities in stacks of catcher foils. In 
Fig. 13 we have included results for At and Po in gold and for Tb149 in

Mat.Tys.Medd.Dan.Vid.Selsk. 33, no. 14. 3
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Fig. 13. Comparison with range measurements in the region 1 <e<100, where electronic stopping 
becomes important. Theoretical ^-values are given, indicating the theoretical curve with which 

to compare the observations.

aluminium. There is good agreement with the theoretical curves. It may be 
noted that the ions were formed in a nuclear reaction with subsequent 
neutron evaporation.

In the case of A41 in aluminium, Davies et al. (private communication) 
performed measurements at energies so high that electronic stopping is im
portant. The ranges are in good agreement with the theoretical curves in 
Fig. 13.

Bryde, Lassen and Poulsen (1962) measured projected ranges for 
radioactive Ga66 recoil ions in gases using electrostatic collection. As typical 
representatives of their observations we have in Fig. 13 included ranges in 
hydrogen and deuterium. These ranges are about 40 percent above theoretical 
ranges. Bryde, Lassen and Poulsen also observed projected ranges for 
Ga66 in copper; the latter ranges are in good agreement with the theoretical 
curve. Also included in Fig. 13 are three measurements by Poskanzer (1963) 
of 1—3 MeV Ne22 ions in aluminium; these ranges are smaller than 
theoretical ranges. Finally, in Fig. 13 is shown the early measurements 
of ranges by Leachman and Atterling (1957), where recoil ions of At203
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Fig. 14. Comparison between theoretical curve and range measurements for fission fragments, 
nuclear stopping being eliminated. For large values of e the representation shown here is superior 

to that in Fig. 13.

and At205 penetrated a stack of aluminium foils, and projected ranges were 
measured. There is fair agreement, but apparently some fluctuations be
tween individual measurements.

As mentioned previously, in the present paper we do not attempt a 
systematic study of electronic stopping as obtained from measurements at 
high values of £. We may merely show two sets of representative measure
ments, where the nuclear stopping is eliminated, so that the extrapolated 
electronic range is obtained. For v<v± the theoretical extrapolated electronic 
range is oe = 2eriilk. Using theoretical range corrections for nuclear 
stopping, d(k, e), as indicated in Fig. 5, we have plotted in Figs. 14 and 15 
values of (A-/2) (q + d (k, e)} obtained from measurements of o. The theoretical 
curve is the straight line kQe/2 = e1/2 . Fig. 14 contains only measurements 
of ranges of fission fragments. In Fig. 14 is shown measurements by Niday 
(1961) of fission fragment ranges in uranium. Niday used a thick uranium 
foil packed in aluminium catcher foils. Fission fragments resulted from 
thermal neutrons. The fragments ending up in aluminium were separated 
by radiochemical means. In this way an estimate of the ranges along the 

3*
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Fig. 15. Some recent measurements of projected ranges for light atoms in gases, corrected for 
nuclear stopping only, like in Fig. 14. Full-drawn curve is theoretical range e1/2. Points stand 
for following ions in air: x Li, + B, AC, AO,  F, BNe, ONa, and following ions in argon: ®Li, 
7B, fN (measurements by Teplova et al.). Further, 0 indicates F in nitrogen, measured by 

Bryde, Lassen and Poulsen.

chord was obtained. The ranges of Niday should be corrected by approx
imately + 5 percent in order to obtain true ranges. The agreement with the 
theoretical range is good.

In Fig. 14 is also included observations on fission fragment ranges by 
Alexander and Gazdik (1960), Fulmer (1957) and Leachman and Schmitt 
(1954). In the case of gold, about 5 percent should be added in order to 
obtain true ranges. There is agreement within ~10 percent.

A number of other authors have measured ranges of fission fragments 
(Smith and Frank (1959), Katcoff, Miskel and Stanley (1948), Good 
and Wollan (1956), Bøggild, Arrøe and Sigurgeirsson (1947), Douthett 
and Templeton (1954), Suzor (1949), Porile and Sugarman (1957), cf. 
also the review article by Harvey (I960)). Some of the earlier measurements 
may be less accurate than those shown in Fig. 14, but generally there is 
approximate agreement with theory.
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As an example of light ions with substantial energies we have taken 
measurements of projected ranges by Teplova et al. (1962). A number of 
ions, from Li to Na, with energies in the interval 1—10 MeV, were slowed 
down in air, argon and hydrogen. Many of these measurements are shown 
in Fig. 15. On the figure is also shown a range value for F18 in nitrogen gas, 
measured by Bryde, Lassen and Poulsen (1962). We have not indicated 
corrections for projected ranges on Fig. 15, since the largest correction would 
be ~ + 8 percent (for Li in argon gas).

In connection with electronic stopping it should be noted that at low 
atomic numbers, and particularly at low values of Zx, there may be de
viations from the theoretical 7c-value based on a Thomas-Fermi treatment. 
At low atomic numbers one may expect variations in the measured Å*-values  
due to shell effects. As an extreme example from a Thomas-Fermi point of 
view, in the case of Li ions in hydrogen, deuterium and helium, it appears 
from measurements of stopping (Allison and Littlejohn (1957)) and of 
ranges (Clerc, Wäffler and Berthold (1961)) that the electronic stopping 
may be as much as 2-3 times less than given by (2.5). Measurements by 
Ormrod and Duckworth (1963) of electronic stopping in carbon for all ions 
with Z1^ll indicate minor shell variations around the value in (2.5).

Range straggling

As to straggling in range (cf. p. 14) we have not attempted any closer 
analysis. High accuracy is difficult to obtain in range straggling, and at low 
e-values (c<0.5) the rule-of-thumb (d q/q)2 = y/6 = MXM2(MX + M2y~2 •(2/3') 
is often sufficient. In many experiments a considerable fluctuation was 
present in the initial ion beam, e. g. because the ion resulted from a com
pound nucleus after neutron evaporation. The experimental range stragglings 
are often considerably above the curves. The measurements by Valyocsik 
on 97 keV a-recoils (cf. Harvey (I960)) correspond to rather well-defined 
conditions. For 97 keV Ra the straggling in nitrogen, neon and argon is 
comparable with the theoretical one (cf. Fig. 6), but in the light gases, 
hydrogen, deuterium and helium, the straggling is much in excess of theo
retical estimates. When subtracting a common constant of order of 0.016 
from the experimental straggling (d q)2xp, one obtains a relative straggling 
y_1(d@/p)2 = 0.14—0.18, in excellent agreement with theory (since 0.03-0.07, 
and 7c=0.12). For 725 keV Th ions, where 0.4-0.5, the experimental 
relative straggling is much too large in deuterium and helium. A reduction 
of (dp)gXp by=a0.04 in all gases would give a reasonable order of magnitude 
of the straggling. As a further example, many measurements by the Copen-
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hagen group show rather large straggling elTects, but some results (e. g. 
ranges of 50 keV Ga66 in hydrogen, helium, nitrogen and argon, shown in 
Fig. 11) with e* 0.3-0.5, have a straggling (Zl^/p)2 0.15-0.25. Even in
the difficult case of the lightest gases, where the theoretical straggling is 
extremely small, there is reasonable accord with theory.

Isotope effects

It is of interest to study isotope effects in range measurements. We shall 
treat the question of different isotopes used as stopping medium*.  Although 
electronic stopping may dominate in the value of the range itself, isotope 
effects can still give direct information about the nuclear stopping. An in
structive example is provided by the measurements of Bryde, Lassen and 
Poulsen (1962, and private communication). They observed ranges of Ga66 
in hydrogen and deuterium; at high energies RD is slightly larger than RH, 
while at low energies RH exceeds RD. Now, if there was only electronic 
stopping, the two ranges would be equal, so that differences are due to 
nuclear stopping. It is seen from (2.7) that the nuclear stopping behaves 
as Sn<x M2~2/s, when M1>>M2. At quite low energies, where the ion cannot 
penetrate deeply into the atom, the effective power of the potential is of 
order of .s = 3, and thus SnD > SnH. At high energies, where the screening 
is weak, the effective power approaches s= 1, and therefore SnH > SnD 
(Lindhard and Scharff (1961)). According to Fig. 2, the change-over in 
stopping occurs at an e-value smaller than 0.5. Correspondingly, in Fig. 4 
the change-over in slope—from lower to higher than that of the straight 
dashed line—occurs at e~l for the Th.-F. curve.

Instead of this qualitative explanation of experimental results we may 
directly compare experimental range differences with theoretical ones de
duced from Figs. 3 and 4. The results are shown in Table 5. Agreement 
between theoretical and experimental range differences is quite good,

* A measurement, where different isotopes are chosen for the incoming particle, is discussed 
by Lindhard and Scharff (1961).

Table 5
Differences between ranges in D2 and H2 for Ga66 ions. Ranges are in mm at 300° K, 

760 mm Hg.

Energy (keV) 1190 790 610 50

(2?£>-I?h)zä................ 0.9 0.7 0.6 -0.05

{RD — RtRexp ................ 1.5 0.8 0.5 -0.05
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especially at the lower energies. This result is obtained in spite of the fact 
that at the three higher energies the absolute ranges of Bryde, Lassen and 
Poulsen are as much as — 40 percent higher than theoretical ranges (Fig. 13).

In further measurements by the Copenhagen group (Sidenius, private 
communication), other examples of isotope effects were obtained for 50 keV 
ions. Thus, for Na24 in hydrogen and deuterium (e = 2.4 and 4.65) one found 

= +0.157 mm, while (/?£> — Rff)th = +0-104 mm, the ranges 
themselves being of order of 0.9-1.0 mm, and ~50 percent larger than 
theoretical ranges. For Au198 ions in hydrogen and deuterium, e is so small 
(e = 0.024 and 0.047) that the effective power has shifted to s>2, and 
(RD~Rir)exp = “0.061 mm, while (RD - RH)th = - 0.087 mm ; experimental 
ranges are ~ 0.4 mm, i. e. about 30 percent larger than theoretical ranges. 
Finally, for Ga66 in helium isotope gases (e~0.4) one found (RHei - RHe3)exp 
= -0.016 mm, to be compared with (Rh^ ~ RHe3)^ = - 0.006 mm; ex
perimental ranges are ~0.4mm, or 20 percent above theoretical ranges. All 
ranges quoted here are in mm at 300° K, 760 mm Hg. The agreement with 
theoretical isotope shifts of ranges is thus fairly good, and it is interesting 
that normally the change from larger to shorter range in the heavier isotope 
occurs at £~1.
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Synopsis
An analysis of the intensity, charge composition and energy spectra of secondary cosmic 

ray components suggests that the average incident extraterrestrial nucleon, in its passage through 
the atmosphere, is repeatedly excited to one of the low lying levels of the pion-nucleon system 
and decays between successive excitations by the emission of several mesons. The particle di
stribution in the atmosphere in the energy range between a few GeV to ~ 1000 GeV can be under
stood and calculated accurately in terms of such decay products and their progeny; other pro
cesses of meson production play only a minor role.

The experimental data available on secondary cosmic radiation determine approximately 
the properties of the excited “average” baryon state, rather similar to those known to exist 
at accelerator energies
Probability of excitation s = 0.7 ±0.07
Isobar mass MB > 2300 MeV
Average number of pions emitted per decay rtß = 3.5 ± 0.5
Average charge excess among decay pions | - ri~ | = 0.35 ±0.15
Ratio of hyperons to nucleons among the decay products Y/1V = 7 ± 7 °/0
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I. Introduction

In this paper an attempt is made to describe the propagation of cosmic 
radiation in terms of a phenomenological model for high energy nuclear 

interactions, which is in harmony with ideas on the process of particle 
creation as evolved in accelerator laboratories and at the same time simple 
enough for accurate calculations of intensity, charge, and energy distribution 
of secondary particles in the atmosphere.

A new investigation of this problem seemed to be required in view of 
the fact that, in recent years, a number of structural features corresponding 
to definite quantum states have been observed in the pion-nucleon system, 
which are known to play an important role at low energies and may do so 
also at high energies. Upto 3 GeV, single and double pion production in 
nucleon-nucleon collisions can be understood in terms of the excitation and 
subsequent deexcitation of such pion-nucleon isobaric states/1) This mode 
of description, which has been developed largely by Lindenbaum and Stern
heimer^), is known as the isobar model of meson production. Recently, 
Damgaard and Hansen <3> have presented evidence that the same process 
may account for the majority of particles created by 22 GeV protons.

At very high energies (> 100 GeV), on the other hand, a study of the 
energy and angular distribution of the great majority of particles requires 
a different mechanism for particle creation; it suggests a kind of fireball 
model(28), e. g., it can be described in terms of nearly isotropic emission of 
low energy particles from a cloud which is approximately at rest in the 
centre of mass system of the colliding nucleons (see Appendix A). Cosmic 
ray evidence indicates that the colliding nucleons themselves do not form 
part of this fireball; their energy is high in the C-systems, even after col
lision. This can be deduced from the propagation of nucleons through the 
atmosphere; in the majority of encounters, a nucleon emerges which re
tains a large fraction of the original energy.

However, it appears that nucleons are not the only particles which 
move with high velocity in the centre-of-mass system after collision; there 
is strong evidence that, at least in a considerable fraction of collisions, a 
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small number of pions is generated with energies high in the rest system of 
the fireball and low in the rest system of one of the baryons, d). It seems 
natural to expect strong final-state interaction between these mesons and 
the nucleon so that one may describe their creation as being the result of 
the deexcitation of a baryon isobar. The term baryon isobar will be used 
only in this sense. One can then divide the particles created in high energy 
nucleon-nucleon encounters into two phenomenologically distinct groups:

the fireball (which contains the majority of particles, all relatively slow 
in the ccntre-of-mass system), and

two other sets, each containing a nucleon as well as a small number 
of mesons, which are slow in the baryon system and therefore dyn
amically related to the nucleon.

As the primary energy increases the multiplicity, and hence the size of 
the fireball, is found to increase. On the other hand, the number of mesons 
from deexcitation of isobaric states appears to remain constant, suggesting 
an essentially energy independent mass distribution of the excited baryon 
states.

This general picture, which appears to be in accord with the energy 
distribution among particles emerging from high energy collisions (3> 4> 5), 
receives strong support from other cosmic ray data; as shown below, the 
positive to negative ratio among sea level muons and among kaons observed 
in balloon exposed emulsion stacks provides evidence in favour of the 
frequent excitation of baryons in high energy collisions.

a) The Ratio of Positive to Negative Muons.
The ratio measured on the surface of the earth is nearly five to 

four at low energies and remains constant (or possibly increases) for muon 
energies above 100 GeV (see Fig. 8). Since the available target nuclei in 
the atmosphere contain protons and neutrons in equal numbers, charge 
symmetry requires that the observed positive excess among muons be due 
to the excess of protons over neutrons in the primary cosmic radiation, 
corresponding to an average charge excess of 0.37*  positive charges per 

5collision. The relations —— and u+— zz-<0.37 show that the muons 
tr 4

measured on the ground are descendants of a subgroup (consisting of 
about 3 mesons) whose members satisfy each of two conditions:

* At a given energy per nucleon, the extra-galactic nucleons consist of 87 % protons and 
13 °/0 neutrons!6), corresponding to an average charge excess of 0.37 per primary interaction. 
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they have a preferential share in the charge excess of the incident nu
cleon, and

they receive an abnormally high energy so as to remain distinct among 
the bulk of particles created in the same interaction.

Since the observed ratio remains essentially constant over a con
siderable energy range, the character of the subgroup should not depend 
on primary energy.

The muons in this subgroup come from parent particles which receive 
an energy proportional to that of the incident nucleon; this can be deduced 
from the fact that their energy spectrum (when corrected for their decay 
and for the interaction of parent particles) follows the same power law as 
the primary and secondary nucleon components (Figs. 2 and 5).

All these conditions are satisfied automatically if one assumes that the 
incident baryon, emerging from a nuclear collision in the atmosphere, 
finds itself some of the time in an excited state from which it returns to 
the nucleon ground state by meson emission.

b) The Ratio of Positive to Negative Kaons.
Cosmic ray produced kaons observed in emulsion stacks furnish quite 

independently another indication of the existence of baryon excitation in 
high energy collisions. Stopping kaons show an uncommonly high positive 
to negative ratio K+/K~ « 20 <7). The observations correspond, in the mirror 
system of nucleon-nucleon collisions, to kaons which receive more than 
25°/0 of the energy of the incident primary. Such a high fractional energy 
is normal if a kaon arises from the deexcitation of the forward isobar. The 
large positive excess follows directly from the assumption that most of the 
excited isobars have strangeness number zero:

Positive kaons should then be produced in processes of the type 
TV*  -> K + Y, (M > 1610 MeV)f ; kaons of negative strangeness should be 
much rarer because in non-strange baryon decay they can occur only 
as members of kaon-antikaon pairs and have much narrower production 
channels :

AT*  ->(KK) + N (M > 1960 MeV) or
N*->K  + Y**-+K  + K + N (M>2010MeV).

In view of all these considerations, it seems useful to adopt a dual picture 
of particle generation in the high energy range relevant to most cosmic ray

f There is now strong evidence that this process contributes appreciably to positive kaon 
production at accelerator energies. (3) 
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phenomena and investigate its consequences. We consider a very simple 
model which incorporates the two distinct processes of meson production. 
The fact that it represents existing data adequately seems to point to an 
underlying simplicity in the high energy collision process itself. (The model 
is more fully discussed in Appendix A, where it will also be shown that 
it is compatible with all well established experimental data on high energy 
interactions.) The main features of the meson production processes may 
be summarized as follows:

1) A fairly isotropic emission of mesons from a fireball, moving with 
small, i. e. non-relativistic velocity in the C-system of a nucleon-nucleon 
collision. The number of these “pionization” mesons increases with 
energy, but their C-energy does not (in conformity with the well-known 
energy independence of transverse momenta); as a result, their energy 
in the L-systems is proportional to the square root of the primary energy.
2) Emission of mesons from various excited baryon states whose nature 
is independent of collision energy above ~ 10-15 GeV. In the L-system 
the energy of decay mesons associated with the forward moving baryon 
is therefore proportional to primary energy (that of the backward moving 
baryon is non-relativistic and essentially independent of primary energy).

The relative importance of the two processes depends on the pheno
menon to be studied. In this paper we confine the investigation to the in
tensity and energy distribution of secondary particles in the atmosphere, 
i. e. to the combined effect of collisions produced by primaries whose energy 
distribution follows the well-known and rather steep power law. In this 
particular case a simplification arises for purely kinematical reasons, 
namely:

In the case of nucleon-nucleon collisions the two processes of particle 
generation cannot both contribute comparable numbers to the flux of the 
secondary particles in the cosmic radiation; this is a consequence of the 
fact that the spectra of mesons from the two processes have very different 
dependence on primary energy and that the steepness of the primary cosmic 
ray spectrum emphasizes those processes in which a large fraction of the 
primary energy is transferred to individual secondary particles. The cal
culation of the relative importance in the cosmic radiation of mesons gener
ated by nucleons in pionization and mesons generated in the deexcitation 
of baryon states is straightforward on the basis of this model; it is carried 
out in Appendix A and the result is shown in Fig. 1. One secs that, for
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PION ENERGY E (GeV)
Fig. 1. Pion production from the decay of baryon isobars is compared with pion production from eva
poration of a fireball (pionization). The ratio 9B/9p (eqs. A 7, A 6) has been plotted for various 
values of the number of isobar decay pions, snB, which are produced in an average collision 
with target nuclei of low atomic weight. The total number of created particles per collision, 
n,, is assumed to be related to that of charged particles, nc, by nt = 1.6 (nc —1) = 2 snB + n0 E@. 
The constants n0 and q have been chosen such that

 / 6 for E = 25 GeV
nt 1 18 for E = 2700 GeV(24).

purely kinematical reasons, the mesons from the deexcitation of baryon 
isobars account for almost all particles above a few GeV even if the prob
ability of excitation is fairly small.

We have, therefore, a situation which at first sight seems paradoxical: 
inspite of the fact that pions from the pionization process are more numerous 
than decay mesons in individual high energy collisions, the secondary cosmic 
rays observed in the atmosphere, at the surface of the earth or below 



10 Nr. 15

ground, represent a reasonably pure sample of the decay products of nucleon 
isobaric states and their progeny.

In view of this general consequence of the assumption of isobar exci
tation at high energy, namely the preponderance of its deexcitation products 
in the atmosphere, we calculate in Section II the flux of different compo
nents of secondary cosmic radiation arising from the production and decay 
of isobars and neglect in the case of nucleon collisions the contribution from 
the pionization process, except in so far as it represents a source of energy 
loss for the nucleon component in the atmosphere.

The creation of particles by the collision of pions in air is included. 
Since the nature of these collisions is not well known, a parameter is in
troduced which describes essentially the degree of elasticity in pion-nucleon 
interactions. Except at large depths in the atmosphere, the generation of 
pions by pions plays only a minor role in the secondary cosmic radiation.

The charge composition pjn, n^/p and the ratio as a function of 
the properties of the excited isobaric states are discussed in Section III.

In both Sections II and III the calculations have been carried out for 
a single hypothetical isobar of “average” properties. The generalization to 
an arbitrary set of isobars decaying in an arbitrary manner is carried out 
in Appendix B. With the appropriate interpretation of symbols, the formulae 
derived in Sections II and III remain valid for the general case.

In Section IV it is shown that one obtains a very close agreement 
between measured and calculated spectra of nucleons and muons over 
the entire energy range above a GeV by a straightforward application of 
this simple model, and that one obtains the experimental ratio of pions to 
nucleons in the lower atmosphere provided one assumes that the collisions 
of pions with air nuclei are essentially inelastic.

In Section V we discuss the conditions which the excitation and de
excitation of baryon states have to satisfy in order to reproduce measure
ments on the secondary component of cosmic radiation with regard to ab
solute intensity, energy distribution, and charge composition.

The results of this investigation are summarized in Section VI. The 
applicability of the model to collisions at ultra-high energies (i. e. air sho
wers) remains to be investigated.
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IL The Propagation of Cosmic Rays Through the Atmosphere on a 
General Isobar Model

The calculations are based on the following assumptions:

1) Incident and target nucleons can be treated as free. (Since nucleon
nucleon collisions exhibit a high degree of elasticity at high energy, a 
nucleon which enters the atmosphere as constituent of a heavy primary 
is not shielded effectively and will have the same interaction mean 
free path in the atmosphere as a primary proton).
2) Upon emerging from the collision the incident baryon has lost some 
energy and may find itself either in the nucleon ground state or in an 
excited state from which it returns to the ground state by a succession 
of two-body decays leading to a total emission of nB pions, or else by 
the emission of heavier bosons which subsequently disintegrate into nB 
pions.
3) A fixed fraction of the incident energy is used up in creating particles 
through the pionization process, but in the presence of mesons from the 
decay of baryon isobars, the energy of the particles created in the pion
ization process is too low to contribute significantly to the flux of second
ary particles in the atmosphere, as shown in Appendix A and Fig. 1. 
(Also mesons from the decay of the baryon which is emitted backwards 
in the C-system do not contribute since their energy in the laboratory 
system is still lower than that of the mesons from the pionization process).

Thus, according to this model, a nucleon after collision and deexcitation 
will have retained a substantial fraction r] of its original energy, where r/ 
does not depend on energy but does depend on the type of isobar created 
in the collision, on its mode of decay, and the angle at which the mesons 
are emitted.

In the text we shall treat the production of secondaries as if they were 
decay products of a single type of isobar which returns to the nucleon ground 
state by the emission of nB pions. In Appendix B we treat the more general 
case of deexcitation of a mixture of baryon states, each according to its 
own decay scheme, characterized by its mass and a set of decay branching 
ratios. The resulting formulae for the flux of secondary particles are identical 
with those given in this section, provided the quantities enclosed in brackets 
< > are replaced by the appropriate average values derived in Appendix B.
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II.l The Energy Spectrum of Nucleons in the Atmosphere

Let the differential 
be represented by

energy spectrum of primary

AT(0,E) dE = S0 dE
E^ + 1

cosmic ray nucleons

(II.1)

over the entire energy range of interest.*
The number of nucleons of energy E which have suffered j collisions 

is given by
N(E)} = Ar(0, E)

The probability that a nucleon has suffered j collisions by the time it 
has reached an atmospheric depth of x g/cm2 is

-x/Å /æy i

Therefore, the llux of nucleons of energy E at a depth x g/cm2 is given by

A'(.t, E) = N(0,E)e~x/Å lb = A'(0, E)e~x/A, (II.2) 
J'

A
where71 = ------- — is the attenuation length of nucleons in air and Å their

1 - <T >
interaction mean free path.

The bracket around indicates, as explained before, that it will have 
to be replaced by an appropriate average (eq. B.9).

Various corrections to eq. II.2 are required in the low energy region; 
they will be discussed in Appendix 1) (eq. D 2, 3).

II.2 The Production Spectrum and Flux of Charged Pions

The production spectrum of charged pions from baryon decay can be 
calculated in a straightforward manner on the basis of the model (see Ap
pendix B) and is given by

Pn(x, E) dx = <B>N(0,E)e~x/A(j? (II.3)

fB} is defined by relation eqs. B.15, 17 in terms of the relative production 
rates of different isobars and their decay properties.

* Effects due to the apparent steepening of the primary spectrum above ~ 1011 eV can 
be observed at present only in extensive air shower frequencies and perhaps near the upper 
end of the y-ray spectrum; this effect will not be considered here.
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(For a single isobar with transition directly to the ground state by isotropic 

emission of a charged pion = B and is equal to

(II.4)

where rf is the fraction of the incident nucleon energy retained by the isobar aftei- 
pionization, s is the fractional energy in the isobar rest system which is carried 
away by the decay pion, ß its velocity, and y is the exponent of the primary spectrum).

The interactions of pions in the atmosphere represent another source 
of particle creation; this increases the pion flux significantly in the lower 
parts of the atmosphere. Since the nature of pion-nucleon collisions is not 
well known, one must introduce a parameter which describes essentially 
the degree of elasticity which characterizes such collisions.

Complete elasticity implies that practically the entire energy is carried 
away by a single pion. Complete inelasticity implies that the available energy 
in the C-system is shared in a non-preferential manner by all the created 
mesons. (Unless the C-system energy of created pions is assumed to de
crease with increasing collision energy, maximal inelasticity means that 
pion multiplicity is proportional to the square root of the incident energy). 
One can describe these extreme as well as intermediate conditions by as
suming that (apart from a possible excitation of the target baryon) collisions 
of pions with nucleons lead on the average to the creation of

v = v0E0 1 (n-5)

mesons and that the incident energy in the L-system is shared by half of 
them, so that their energy is

E = 2Eo. (II.6)
v

The production of charged pions by pions is then given by

where

p; (x, E) - (/l+ + </_) - (ÆÊ)2 «-1’ F„ 
Ajl

t

(■I.7)

0 is the fraction of created pions of different charge which share the avail
able energy, and Fn(x, E) is the flux of charged pions at depth x with energy E.
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This flux of charged pions is given by the solution of the differential
equation

(II.8)

where
^0^71 

crnE E
(en = 128 GeV if /;0 = 7 km is the scale height of the atmo

sphere); is the interaction mean free path of pions in air.

The extreme cases are represented by t = 1 (elastic) in which case the
equation reduces to

(11.9)

and t = 2 (complete inelasticity).
The exact solution of equation 11.8 may be written in the form

where

(11.10)

Iz
n = 0

[(q++q_)t]n (1-^j 

(KE)T-D (z _n)!
(11.11)

This can be verified by substitution. The pions which come directly from 
isobar decay are represented by the term n = 0 ; higher terms are important 
only in the lower atmosphere and for pions of intermediate energy (10- 
100 GeV).

11.3 The Production of Neutral Pions

The production spectrum of neutral pions is obtained from eqs. II.3 
and II.7 :

Cr (æ. E) O. £) + y-' (AE)2 «-■> F„
^71

X, (11.12)

From this equation the production spectrum and flux of y-rays can be cal
culated in a straightforward manner if one assumes that y-rays arise pri
marily from the decay of neutral pions.
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11.4 The Flux of Muons
The production spectrum of muons from pion decay is

Pu (æ> E) =~^Fn [æ’ •xE
Here, in analogy to eq. 11.4,

i
2 2 yg (o- + 1) 

(1 +ß)o+1 - (i-ßY+1
1.27,

where ß = 0.28 is the muon velocity in the pion rest system

and -[o-(x, E) +1]
d [log F^(rr, F)] 

d log E

(11.13)

(11-14)

(11.15)

is the exponent for the “best fitting” power law describing the pion spectrum. 
(Since a varies slowly between y and y + 1, the expression in brackets in 11.14 
is very close to unity and can be neglected ; this is equivalent to the assumption 
that each muon receives 79 °/0 of the pion energy, irrespective of the angle 
of emission).

The probability that a muon, produced at atmospheric depth z with 
energy Ez survives until it reaches depth x while losing energy by ionization 
at the rate b, so that it arrives with energy E = Ez-b (x- z) is given by

a> (z, Ez ; x) = z
X

b (x - z) \ 
Ez)

Ez+bz

Thus the muon flux is

F„ (x, B) =4 dzajPp (z, Ez)
*’o

2r^ + 1

£ O< OE')
i=_ 0

p' y + 2 + v

(11.16)

(11.17)

where the integral can be replaced by the gamma function F (J. + v +1) for x ))

E + bx’
v =
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E' = E + b(x — x)

and the “mean height of production”

x

for x » Ån.

/.n iat (rE') F (z + v + 1)
i = o
00

y1 at (rE') r(i + v + 1)
i = 0

(11.18)

When A, the first term in the summation, i. e. a0 =-----------, accounts
f + ^TitrE’

for more than 80 °/0 of the muons in the lower atmosphere at all energies.

11.5 The Flux of Neutrinos from — Decay

The neutrino flux has the same form as the muon flux, but without the 
terms due to ionization and decay; it is, therefore, obtained from the muon 
flux (eq. 11.17) by setting v = 0 and b = 0 and replacing r by

for y < a < y + 1 .

Fv (x, E) =
So (B) en £ at (r'E) il

ï = 0

«)r7 + 1 E^ + 2

(11.19)

(11.20)

III. The Charge Composition of Secondary Cosmic Rays

The target nuclei in the atmosphere contain equal numbers of protons 
and neutrons. If the incident cosmic ray beam also were charge symmetric, 
then all secondary components of cosmic radiation would have to exhibit 
charge symmetry on any model of particle creation. Actually, the primary 
cosmic ray particles bring a known amount of excess positive charge. The 
manner in which this excess is shared by various secondary components 
of the cosmic radiation provides clues to the nature of high energy inter- 
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actions and, in particular, to the excitation and decay inodes of isobars. 
In this section we investigate the charge composition of different compo
nents of cosmic radiation on a general isobar model.

111.1. The Neutron to Proton Ratio in the Atmosphere

Let tv represent the probability that a nucleon after colliding with a 
charge symmetric target and after possible excitation and decay emerges 
in a different charge state. After j collisions lhe original composition of 
the nucleon beam’*’ <50 will be changed into

V '■P+n/j (HI.l)

Proceeding as in the derivation of eq. (II.2) one finds

Thus

Np(x, E) = N(0, E)e

(111.2)

(111.3)

N„(x, E)-N(0, E)e (III.4)

An explicit expression for (ri7w) in terms of isobar properties is given in Ap
pendix B (eq. B.10).
At energies E < 10 GeV eqs. (III.3, 4) have to be corrected as discussed in Ap
pendix D.

III.2. The Ratio of Positive to Negative Pions and Muons
n+ — n_

Let ôn =--------  be the composition of the charged pions emitted in the
n+ +n_

deexcitation of a baryon which entered the collision as a proton. (Because

t The composition of the primary beam <50 = 0.74 is knownß) to be constant within ex
perimental error upto nucleon energies of order 1013 eV. At still higher energies there is evidence 
for a steepening of the primary spectrum and, if real, this will be accompanied presumably by 
changes in the chemical composition and the proton to neutron ratio.8)

Mat.I’ys.Medd.Dan.Vid.Selsk. 33, no. 15. 2
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of charge symmetry, this changes sign if the incident particle is a neutron). 
The composition of the decay pions produced at depth x is then the product 

(III.5)

where <(5n> is the average positive excess mong the decay pions; it is de
fined by eqs. (B.15, 16) for an arbitrary mixture of isobaric states.

In order to determine the charge composition of the pion flux in the 
atmosphere, one may rewrite (eq. 11.8.)

Setting

and
n

Gn = Fn+ ~~
(III.6)

one finds

(W.r,-----Æ
(III.7)

and

(.r, E)
dx

”71

(111.8)

</+, </_ is the fraction of positives or negatives among the pions which 
share the energy available in a pion induced interaction for the case that 
the incident pion had positive charge. Charge symmetry requires that these 
quantities change sign if the incident pion is negative; on the other hand, 
charge conservation in collisions of pions with charge symmetric targets 
requires that

i<(7+-g_)^ = (7+-Q_)^j <1, (III.9)

depending on whether the excess charge brought in by the incident pion is 
uniformly distributed among all secondaries or appears preferentially among 
the more energetic ones. Making use of eqs. (III.2, 3, 4 and 7), eq. (III.8) 
can now be rewritten in a form similar to the differential equation (III.7:
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where

and

rfG^(x.g) 
dx

f^Gn
(KE/
X,--------/<

Sn<Zi> at
= do<^>2£y+1g ,A + 7~, (AL)

a/
44

1 < a < 2.

In analogy to eq. (II.10) the solution can be written in the form

^(æ, £) £T + 1

! \l X \

Â i = 0

where cq can be obtained from by making the substitutions

A ->Z'

y y + 1 

(q++q-) t^.

Thus, the charge composition of the pion flux is

A% — A7T

■^71+ +

and that of the muons from pion decay (see 11.17)

Fr
P.^F,-

2'a;(rE')\rf!M-V + ’ 
t < = 0 Jo

« = 0 Jo

(111.8a)

(III.10)

(III.11)

(III.12)

(III.13)

2*
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The Effect of Kaons on the Muon Charge Ratio at Sea Level.

In this and the preceding section it was tacitly assumed that pions are 
the only particles which, by their decay, contribute to the muon flux. How
ever, non-strange isobars of sufficiently large mass can also decay into a 
kaon and a hyperon, or a kaon-antikaon pair and a non-strange baryon; 
by subsequent decay these particles contribute to the observed flux of pions, 
y-rays, and muons.

In general, one expects that such decay modes make only a moderate 
contribution to the flux of secondaries in the atmosphere. In the case of 
high energy muons, however, the part of the contribution which does not 
involve an intermediate pion (viz. the process 7<->/z + v) is amplified be
cause the mean life of charged kaons is significantly shorter than that of 
charged pions and their mass is greater. Therefore, at a given energy, the 
probability of decay before interacting in the atmosphere is larger for a 
kaon than for a pion and, in the energy range where pion interaction be
comes more probable than decay, an increasing fraction of muons arises 
from the decay of charged kaons.

Also hyperons and neutral A-particles can decay into muons without 
an intermediate pion, but they will contribute little, because in the case of 
hyperons and A’f the branching ratio is small, and in the case of K® the 
lifetime is long. Therefore, it is the presence of charged kaons decaying 
directly into muons which produces the largest effect.

Among the decay modes which contribute kaons, the mode

N*-+  K+ Y

is no doubt dominant;’*’ it can produce positive but not negative kaons.

(Negative kaons can arise in two ways ; either through A*  -> (KK) + N or through 
N*  -> K + Y*,  where the hyperon state is highly excited and therefore has a certain 
probability for fast decay via Y*  -+K + N).

The ratio of positive to negative muons becomes therefore

f As pointed out in Section I, the strong excess of positive over negative kaons among 
the very slow and the very fast particles produced in nuclear interactions indicates that modes 
which produce only kaons of strangeness + 1 dominate in the decay of non-strange isobars.



Nr. 15 21

where bK is the branching ratio for the decay mode N*->K+Y  and F^, 

ô^, and F/l£ are given by eqs. (11.17, III.13 and C.
pends on energy approximately as

6), respectively. ---- de-

(III.15)

IV. Comparison between Measured and Calculated Properties of 
the Secondary Cosmic Radiation

In the previous section explicit expressions have been obtained for the 
altitude and energy dependence of protons, neutrons, pions, muons, and 
neutrinos.

It remains to assign numerical values to the various energy independent 
parameters which characterize the primary cosmic radiation and the inter
actions of nucleons and pions in the atmosphere. In principle, it should 
be possible to get the information on interaction cross sections from the 
asymptotic behaviour of these particles in the upper energy range of 
present-day accelerators. However, some of these data, especially on the 
formation of isobars, are not yet known adequately and it is necessary to 
use a few cosmic ray measurements to assign numerical values to some 
of these constants. The following values have been used for drawing Figs. 
2-6.

a) The interaction mean free path of nucleons in air
z = 75 ± 5 g/cm2t

has been obtained from the absorption in graphite of neutrons capable 
of producing charged penetrating particles 60).

b) The interaction mean free path for pions in air
Arc = 120 g/cm2

t Bad geometry absorption measurements at accelerator energies9) yield a mean free path 
which is at least 20 °/0 longer. It is difficult to account for this discrepancy, unless it is due to 
interactions in which the incident proton suffers only a small energy loss and receives a trans
verse momentum less than 150 MeV/c. Such collisions could be missed in the accelerator ex
periment because the emerging proton falls within the diffraction peak.
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PROTON KINETIC ENERGY GeV

Fig. 2. The energy spectrum of protons at sea level. Curve ‘a’ is a line of constant slope y +1 = 2.67. 
Curve ‘b’ represents the calculated spectrum (eq. D.3) based on an attenuation mean free path 
A = 120 g/cm2 and an ionization loss of 2 MeV (g/cm2). The experimental points are taken 
from ref. 12. The excess of observed protons at low energy is of the right order of magnitude 
to be attributed to terrestrial protons from the target nuclei in the atmosphere (see Appendix Db).

has been estimated by multiplying Â with the ratio of the cross section

1>p m 1.6 obtained in high energy laboratories* 11).

c) The exponent of the primary spectrum

y = 1.67

is consistent with direct measurements at the top of the atmosphere; 
the exact value has been chosen so as to give the best fit to the sea level 
proton spectrum at high energy* 12).

d) The absorption length for nucleons in the atmosphere

A = 120 ± 5 g/cm2

has been obtained from the absolute intensity of protons at sea level as 
measured by the Durham group *12), and the absolute value of the pri
mary cosmic ray flux as given by McDonald and Webber*13). The 
expected deviations of the proton spectrum from a simple power law 
at low energies arc discussed in Appendix D.
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Fig. 3. Curve ‘a’ represents, as a function of altitude, the ratio of neutrons to protons at all 
energies for which ionization loss and contribution of recoil nucleons (Appendix D) can be neg
lected. Curves ‘b’, ‘c’, and ‘d’ represent the ratio of neutrons to the sum of protons and charged 

pions for various energies. The experimental data are those of ref. 26.

e) The composition of the primary radiation

po - n0
po + n0

0.74±0.01

has been obtained from the measurements of the primary chemical 
composition as reviewed by Waddington (6).

f) The charge exchange probability for nucleons colliding in the 
atmosphere

iv = 0.3

has been chosen to reproduce the neutron to proton ratio as measured 
at mountain altitude* 14). (It is assumed that the average <r/w> can 
be replaced by
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ENERGY E (GeV)

Fig. 4. The ratio of charged pions to nucleons as a function of energy at atmospheric depths 
of 200 g/cm2 and 800 g/cm2. The solid curves are calculated on the assumption of complete in

elasticity in pion-nucleon collisions, the dotted curves for complete elasticity.

g) The constants which determine the number of pions which share 
the energy in pion nucleon collisions, eq. (II.5), have been chosen to 
represent the extreme cases

a) Complete elasticity / = 1 (for t = 1 the equations are independent 
of Æ)

ß) Complete inelasticity t = 2 v = 0.7 E2GeV (IV.1)

K is chosen to lit the measured n±!p ratio at 800 g/cm2 in the 
energy region 20-40 GeV <14>.

h) The constant which characterizes the fractional energy given 
to pions in the decay of baryon isobars is obtained by comparing cal
culated and measured sea level flux of muons at 40 GeV 05)
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MUON ENERGY E(GeV)

Fig. 5. The energy spectrum of muons at sea level. The solid curve represents the calculated 
spectrum, eq. 11.17, normalized at E z 40 GeV. The dotted curve represents the spectrum after 
a rough correction for contribution from pionization has been made with the help of Fig. 1. the 

closeness of its fit to the experimental data is therefore somewhat fortuitous.

<B> = (3.35 ± 0.3)-10 2 (both for the elastic case and for the inelastic 
case).

Using these constants the following curves have been calculated and 
reproduced together with the available experimental points:

a) The energy spectrum of protons Fig. 2 
(eq. D3 (Appendix D)).

ß) The ratio of neutrons to protons as a function of atmospheric pres
sure Fig. 3 a (eqs. III.3, 4)

y) The ratio of neutral to charged interacting particles -------------  as
p + 7c+ + n~
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ENERGY E (GeV)

Fig. 6. The total number of created particles, charged and neutral, emitted in collisions of charged 
pions with target nuclei of low atomic weight, is plotted as a function of energy. The curve 
represents the relation IV.la, with sn^z 2.4. Experimental points are from the data compiled 

in ref. 27.

a function of atmospheric pressure for various energies, on the as
sumption that pion-nucleon collisions are completely inelastic. 
Figs. 3 b, c, d (eqs. U.K) and 111.3, 4).

ô) The ratio of pions to nucleons at an atmospheric depth of 200 g/cm2 
and 800 g/cm2 for the two extreme cases: that pion nucleon inter
actions are completely elastic and that they are completely inelastic. 
Fig. 4 (eqs. 11.10 and 111.3).

e) The energy spectrum of muons at sea level. Fig. 5 (eq. 11.17). 
ç?) The multiplicity of created particle in pion nucleon collisions. Fig. 6.

+ 0.7 E/Gev). (IV. 1 a)t
t The first term has been added to eq. (IV.l) to represent low energy mesons from the decay 

of an excited target baryon.
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Formula (IV. 1 a), which corresponds to completely inelastic pion-nucleon 
interactions at high energy, cannot be expected to reproduce the multiplicity 
accurately at low energy; however, it describes the available data reason
ably well provided one choses the mean number of mesons contributed by 
the target baryon, snB 2 (Fig. 6). [The experimental data for high energy 
pion collisions are extremely poor; data below 20 GeV seem to indicate that 

1 .the multiplicity of created particles increases not slower than E2, indepen
dent of the choice of snB].

As shown in Fig. 4, the difference in the pion flux for the assumption 
of complete elasticity and complete inelasticity is small at 200 g/cm2 and, 
therefore, the muon spectra at sea level are insensitive to the nature of pion
nucleon interactions. On the other hand, the pion flux near ground is very 
sensitive; compared to the elastic case the assumption of strong multiplication 
of pions leads to a large excess between 10 GeV and ~30 GeV and a very 
large deficit above ~50 GeV. The inelastic case is in better agreement with 
the existing determination of the pion-nucleon ratio than the elastic case.

Assuming then a high degree of inelasticity in pion interactions, the 
comparison between calculated and measured quantities (Figs. 2-6) shows 
that the very simple, energy independent model of high energy collisions, 
which has been adopted, is adequate for describing the distribution of 
secondary cosmic radiation within the accuracy of existing measurements.

It is now of interest to discuss the restrictions which are imposed on the 
masses, the excitation probabilities, and the decay modes of isobars by the 
numerical values of and A and by the observed energy dependence 
of multiplicity of created particles in nucleon-nucleon collisions.

V. Average Parameters Characterizing the Production and Properties 
of the Dominant Baryon Isobars

In order to find the simplest isobar model capable of accounting for all 
existing observations on secondary cosmic radiation, one may assume 
tentatively that the incident nucleon, after having lost a fixed fraction (1 -r/) 
of its energy in the pionization process, has a probability of emerging as 
an excited baryon of mass MB and a probability (1 — s) of emerging in the 
nucleon ground state. If excited, the baryon is assumed to decay to the 
ground state by the isotropic emission of nB mesons, all of which have the 
same energy in the baryon rest system.t

f These nB mesons may of course be themselves decay products of a boson isobar.
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V.l.  The Excitation Probability of Isobars and the Average Number of Decay 
Mesons

The average number of mesons emitted in the decay of nuclear isobaric 
states can be estimated from the shape of the multiplicity-energy relation 
for particles created in nucleon-nucleon collisions.

It is shown in Appendix A.2 that the assumptions underlying the model 
discussed in this paper determine the form of the relation between multi
plicity of created particles and energy (eq. A.4)

X
nt = 2 snB + n0 E2,

where the first term represents the average number of decay mesons from 
isobaric states of the baryon and the second the contribution from pionization. 
The actual relation may be expected to show some structure if the size of 
the heavy bosons constituting the fireball were quantized in units Mp » mn.

When comparing relation A.4 with existing experimental values shown 
in Fig. 9, one sees that it is consistent with existing data

for 2 < snB < 3

and no for E in GeV.4

The difference between this relation and the frequently employed em- 
pirical form nt~E*  becomes significant only at energies above ~ 101& eV, 
i. e. in the study of extensive air showers.

Separate values for the excitation probability s and the mean number 
of isobar decay pions nB can be obtained by using the numerical values 
for <r/> and <7?>, obtained in the preceding section.

is related to the mean elasticity of collisions and can be expressed 
in terms of a ratio of nucleon interaction mean free path and attenuation 
length (11.2) which have been given in the previous section:

<*/>  = 1--? = 0.37 ±0.06. (V.l)

With the help of eq. (B.9) one finds (for the particular case of a single 
type of baryon isobar) the relation between this parameter and the isobar 
properties :

<’/’'> - 'i"' [1 +s (.4- 1)], (V.2)
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where A (defined by B.5) is given by

A = (1 +^)y+1-d-My + 1
P 2ßp(y + l)

MB + M2- n2Bm2 . . +.
g = —- ------------------ — is the average fractional energy in the rest system of the

21'4
isobar carried away by the deexcited nucleon and ßp is its velocity.

A second relation involving the same parameters is obtained from eqs. 
(B.15, 17), which determine the <B> in terms if isobar properties. (<B> is 
the scale factor which relates pion production to nucleon intensity).

For the case under discussion eqs. (B.15), 17 yield
(B) = | snB = (3.35 ± 0.3) x 10 2 ; (V.3)

here a (defined by B.13) is given by

v(l+^ + 1-(l-ßp + 1 
“-er--------- WTïj----------’

M2 — M2 + n2 m2
where e = — ------------- - —— is the average fractional energy in the rest system

2 MBnB
of the isobar, carried away by a pion, and ß is its velocity.

After eliminating the unknown factor between eq. (V.2) and (V.3) 
one obtains a relation between

the isobar mass, MB,
the probability of its excitation, s,
and the number of decay mesons, nB.

This relation is rather insensitive to the value of MB, which cannot there
fore be determined accurately from the available data. Therefore, we have 
plotted the relation in Figs. 7 a, b for two extreme values of MB:

Ä)min is defined by

Mb = oo and
MB = 04ß)min

C^ß)min
M p

= 0.288 ns + j/l + 0.06nj; (V.4)

it is the lowest possible mass for an isobar which decays into nB pions and 
gives to each just the energy which a pion would receive in the deexcitation
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AVERAGE NUMBER OF DECAY MESONS

Fig. 7. The probability of baryon excitation, s, is plotted against the average number of decay 
mesons nB. The shaded area indicates the values of s and nß which are compatible with the 
observed ratios between the fluxes of primary nucleons, sea level protons, and sea level muons 
and with the observed energy dependence of multiplicity of meson production in high energy 
collisions (see Section V). Fig. 7a refers to a baryon with minimum mass as defined by eq. V.4;

Fig. 7b refers to a baryon of infinite mass.

of the (3,3) resonance, i. e. the lowest excited state of the pion nucleon 
system.

The shaded area in Fig. 7 a indicates the range of values of s and n 
which satisfy the cosmic ray data

s = 0.70 ±.07, (V.5)

nß = 3.5±0.5. (V.6)

The vertical spread of the area of uncertainty in Fig. 7, i. e. the error 
in excitation probability, reflects mainly the uncertainty in the value of the 
nuclear interaction mean free path À; the horizontal spread (the error in 
nß) reflects mainly the present uncertainty in the mean multiplicity of 
created particles in the 1000 GeV region.
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Fig. 7 b (Mb = oo) yields values for s and nB which are not very different 
from those given in Fig. 7 a, but il corresponds of course to an unrealistic 
assumption.

With nB = 3.5, eq. (V.4) gives a lower limit for the average excited baryon 
mass (Afg)mln = 2300 MeV. An indication that the actual value lies close 
to this limit is provided by the transverse momentum distribution of pions; 
the highest transverse momentum from an isobar of mass 2300 MeV occurs 
when it decays directly to the nucleon ground state by emission of a single 
pion; this value is 900 MeV/c and is very close to the upper limit of the 
observed transverse momentum distribution of neutral pions <16>.

The fractional energy (1-t/) given to pionization can now be deter
mined from eq. (V.2) or (V.3); it is (25 ± 7) °/0. This is not inconsistent with 
the observed multiplicity and the C-system energy of particles evaporated 
from the fireball if one also takes into account that ca. 20 °/0 of the particles 
are heavier than pions (i. e. kaons or nucleon-antinucleon pairs).t

It must be remembered, however, that rf as determined here, and also 
the multiplicity relation which we have used, refer to targets consisting of 
light nuclei, not of single nucleons. Similarly, the value deduced for the 
excitation probability, s, refers to collisions of nucleons with light nuclei. 
The fractional energy loss to pionization in air (1 — if) «*25  °/0 should cor
respond to an energy loss of about 18 °/0 for nucleon-nucleon collisions.

The fraction of the incident energy which goes into the pionization pro
cess is seen to be about half of the total energy loss of nucleons; because 
this energy is distributed among many particles, while in isobar deexcitation 
the energy is concentrated on a small number of pions, it is the latter which 
completely dominate the secondary cosmic radiation (see Fig. 1).

V.2.  The Composition of Isobar Decay Products

a) The Ratio of Positive to Negative Pions and the Branching Ratio for 
K- Decay.

The positive excess among decay pions of the forward isobars 
created by proton collisions with a charge symmetric target, as well as the

t If pions were the only particles evaporated from the fireball, the model predicts:

(l-rf) =------ y,------ (i. e. 2 11 °/0, if ef, which is the average pion energy in the C-system,
is taken as ep = 460 MeV). But if only 80 °/0 of the created particles are pions and 20 °/0 are 
nucleons and antinucleons created with energy e ~ 3 Mp, the corresponding value of (1 - if) 
lies above 20 °/0.
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branching ratio bk for the decay mode A'*  -> K + Y, can be obtained from 
the observed muon charge ratio as a function of energy. Inserting the ex
perimental values of quantities entering into eq. (III.15), the ratio f/+//n~ has 
been plotted as a function of energy in Fig. 8 for various values of bk. The 
experimental points shown are those of reference 17; above 100 GeV, this 
includes all measurements in the vertical direction. All other experimental 
data (ref. 18) agree within errors, but cover only the lower part of the 
energy spectrum. (One experimental point <18c> which is in disagreement 
with the others has been indicated in the figure).

Each of the curves in Fig. 8 corresponds to a definite value of the branch
ing ratio bk for the decay 2V*  -+ K+Y and to a definite value for the charge 
excess amongst pions. On each curve there is also shown the value 
of which represents the charge excess for (1 -bk) decays which do not 
involve strange particles. It is related to by

~ T c bk y

where c 0.8 depends slightly on the particular hyperon states involved. 
While the data seem to indicate an energy dependence of the form given 

by eq. (III. 15), they do not rule out the value zero for bk.
We take 

and, correspondingly,
bk - (10 ± 10) »/„

(The highest value of the charge excess
1

5.1, corresponds to bk = 0).

A value of bk 10 °/0 corresponds to a kaon to pion production ratio

2 bj B* 
Rl-fr*) B 16°/o

corresponding approximately to

(an upper limit on the production ratio K /(tt+ + 40 °/0 at about 70 GeV,

80 °/o was obtained by Ashton and 
total

Wolfendale<19) using the variation of muon flux with zenith angle).

b) The Ratio of Hyperons to Nucleons.
From the branching ratio bK = 0.10 ± 0.10 for the isobar decay mode 

+ V one obtains the ratio of hyperons to nucleons among the for
ward emitted baryons in high energy collisions:
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MUON ENERGY (GeV)

Fig. 8. The ratio of positive to negative muons at sea level^O as a function of their energy. 
The relation given by eq. (111.15) has been drawn for various pairs of values (S') and bk consistent 
with the experimental data. [(<Y ) is the charge excess among pions from the isobar decays which 
do not involve strange particles, and b^ is the branching ratio for the decay mode A'* ->7<+ Y.]

and an estimate for the hyperon production cross section in high energy 
collisions :

°y = 2 sbK <rinelastlc 4.5 mb.

However, because of the large experimental error which is still attached 
to the charge ratio of muons at high energy, one can place at present only 
an upper limit of 9 mb. on this cross section. (An earlier suggestion by one 
of the authors (4a), that this ratio may be high, is not borne out by this ana
lysis). Fig. 8 shows that it is necessary to measure the ratio at energy 
~ 250 GeV to better than 5 °/0 in order to determine this cross section with 
an accuracy of ~ 30 °/0.
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VI. Discussion

Il has been shown thai the model of meson production which has been 
adopted permits a rigorous calculation of the intensity, composition, and 
energy distribution of secondary cosmic ray particles in terms of those of 
I he primary radiation. The model contains only one fundamental (and 
plausible) assumption, namely, that the excitation of baryon isobaric states, 
which is a prominent feature of nuclear collisions at laboratory energies, 
remains of some importance for collisions at higher energies. The compara
tive unimportance in the secondary cosmic radiation of mesons produced 
with low energies in the cenler-of-mass system of nucleon-nucleon collisions 
follows directly from this basic assumption (sec Appendix A and Fig. 1). 
I’he contribution of mesons produced in pion-nucleon collisions is unim
portant when calculating the muon llux, but affects the ratio of pions Io 
nucleons in the lower atmosphere. The derivation of expressions for the 
spectra of various secondary components is then straightforward and can 
be carried out for an arbitrary set of baryon stales and an arbitrary com
bination of excitation probabilities and decay modes.

Making use of existing experimental data on secondary components one 
obtains then fairly definite values for the excitation probability of some 
“average” baryon slate (~ 0.7) and for its mean mass (~ 2200 MeV) (al
though arguments against a higher value cannot be considered entirely 
conclusive). One obtains also an average value for the number of mesons 
emitted in the decay of the isobar (/iB 3.5) and for their net charge 
(|7t+-7ir I «= 0.35). I’he branching ratio for the decay of the “average iso
bar” in the mode A’*->  K 4 Y can be determined only roughly bk = 10 (± 10) 
Finally, one can break down the average fractional energy loss suffered by 
nucleons in high energy collisions into a part given to the decay mesons 
(~25°/0)and a part spent in creating particles in the C-system of nucleon
nucleon collisions (15-20 °/0).

On the other hand, il does not seem possible al present Io deduce in a 
unique way, solely from the average properties of the secondary cosmic 
radiation, the excitation probabilities and decay schemes of the individual 
baryon stales involved. This seems feasible only, either by extrapolation 
from the lower energy region accessible to accelerators, or by studying 
individual high energy events, jets or airshowers, with the particular aim 
of obtaining data on the very fast or the very slow particles created in the 
interaction.
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The assumption thai, in nuclear collisions al all energies above ~ 10 GeV, 
isobars are produced with masses and decay properlies very similar lo 
those needed to reproduce the pion production spectra al 22GeV(3), is 
sufficient lo account for the existing observations on secondary cosmic rays 
in the atmosphere. It is consistent with existing data on particle production 
in high energy laboratories and with observations on jets. More complicated 
models lo account for secondary cosmic ray particles are clearly possible; 
the very simple hypothesis which has been explored in this paper is not 
unique, but it seems to be adequate al this stage.

An application of the model discussed in this paper lo the structure of 
airshowers will be the subject of a later study. It seems worth mentioning, 
however, that, if the mechanism described here remains essentially valid 
also in the energy region responsible for airshowers, the probability that an 
incident nucleon loses all but 25 °/0 of its energy to neutral pions in a single 
collision will not be small. Such events will give rise to a few percent of air 
showers with abnormally high electron lo muon ratios, i. e. with properties 
not unlike those of y-ray induced airshowers whose possible occurrence 
and frequency is now under active investigation in various parts of the 
world.<20)

In view of the fact that particles created with low energy in the C-syslem 
of nucleon-nucleon collisions contribute little to the secondary cosmic ray 
flux (Appendix A) and that the recoil nucleons of terrestrial origin contri
bute only to the non-relalivislic region of the energy spectrum (Appendix I)), 
the high energy cosmic ray nucleons at any depth in the atmosphere re
present essentially a sample of the extraterrestrial matter brought in by the
incident cosmic radiation. Therefore, it is possible to study the fundamental 
question of whether the very high energy primary cosmic ray particles 
contain an appreciable fraction of anti-matter. If the primaries contained 
anti-nucleons, the nucleon spectrum on the ground above a few GeV should 
contain a corresponding fraction. By analysing the charge composition of 
the nucleon component at sea level upto ~60 GeV, it seems possible lo
investigate a possible fraction of antimatter in the primary radiation upto 
energies of order 10,000 GeV/nucleon.
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Appendix A

Experimental Justification for the Choice of the Model

11 will be shown in this Appendix that each of the assumptions, on which 
the calculations in this paper are based, either follows from, or is at least 
consistent with, all experimentally well established facts regarding high 
energy collisions and also that once the not too infrequent occurrence of 
excited baryon states is admitted, one is led necessarily to the conclusion 
that the secondary cosmic radiation is dominated by the decay products 
of these baryon isobars.

'fhe basic features of the model are:

1) A fireball is created at rest in the C-systcm of a nucleon-nucleon 
collision.:f:
2) 'fhe tireball evaporates, giving rise to nF mesons, with an isotropic 
or moderately anisotropic angular distribution in its rest system. The 
ratio of pions to non-pions among the created particles does not change 
with energy.
3) In the evaporation process each of these mesons receives a momen
tum whose average value

PF = -P. ~ 450 MeV/c,
jl x

and whose maximum value

(/y)max~«00 MeV/c.

Since the average transverse momentum, P is known to be indepen
dent of energy, PF also is independent of energy.
1) 'flic number nF of mesons evaporated from the fireball increases 
in proportion to the energy available in the C-system of the nucleon
nucleon collision.
5) 'fhe incident baryon emerges in some excited state with a probability, 
.s, and decays by emitting on the average nB pions, whose momentum 
in the baryon rest system is Pn.

faken together, conditions 1) to 4) imply also that the incident baryon 
transfers on the average a constant fraction (1 -vf ) of its energy to the fireball.

* The terms “fireball” and “pionization” were first introduced by G. Cocconi.
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A.1 The Pionization Process

a) Energy spectra of mesons.
The energy distribution of mesons in the C-system of a nucleon-nucleon 

collision can be measured reliably provided the following conditions are 
satisfied :

a) The event occurs within or in the vicinity of the detector.
/?) The energy of the incident particle is known with adequate accuracy, 
y) Observability and measurability are not functions of particle mo
mentum, at least within a broad and well delined momentum range.

The only experiments carried out so far which satisfy all these con
ditions are those of the Moscow group <5a>. Here, the incident energy is 
measured by a total absorption calorimeter and the momenta of secondary 
charged particles by the curvature of their tracks in a magnet cloud chamber. 
They obtain PF = 450 MeV/c. Unfortunately, the experiments are limited to 
incident energies below 500 GeV.

If one relaxes the second condition and accepts also those experiments 
in which the incident energy is not measured but deduced from symmetry 
arguments and from the angular distribution of shower particles, one admits 
three other classes of experiments:

i) Emulsion experiments in which geometrically favourable events arc 
selected and the momenta of all shower particles of a given collision are 
determined by scattering measurements. Experiments of this type, carried 
out by Jain<5c>, are discussed in ref. 1; the average momentum of par
ticles belonging to the pionization process is PF = 430 MeV/c. Measure
ments of Schein et al.(5b), analysed in an analogous manner, yield a 
somewhat higher value PF = 600 MeV/c. All the measurements refer to 
incident energies of order 2500 GeV.

ii) Cloud chamber experiments with magnetic field but without calori
meter. The experiment of Hansen and Fretter!50) yields PF = 470 MeV 
at 100 GeV and PF = 370 MeV at 1000 GeV primary energy; that of 
Montanet el al.(5e) yields PF = 410 MeV/c at 100 GeV.

iii) Cloud chambers containing enough absorbers both of low and of 
high atomic weight, so that all y-rays are converted and observable and 
the energy of neutral pions produced in the interaction can be estimated 
from the ensuing showers. Such an experiment is that of Lal et al.<5f) 
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which yielded PF = 430 MeV/c. This experiment refers to a range of 
incident energies 20 GeV < L < 150 GeV.

One sees that the experimental results on C-system momenta agree fairly 
well with each other and suggest the adopted value PF 450 MeV/c.

The average transverse momentum of shower particles has been meas
ured by many experimenters. Most particles have transverse momenta 

i. e. they are relativistic in the C-system; the generally accep
ted value of P is independent of the incident energy and lies between 
350 and 400 MeV/c. Thus, assumption 3), that Pyis energy independent and 
about 20-30 °/0 larger than the average transverse momentum of shower 
particles, is in conformity with existing measurements.

b) Angular Distribution of Mesons.
The ratio of average total to average transverse momentum of shower 

particles in the C-system suggests a fairly isotropic angular distribution for 
the particles created in the pionization process. Direct measurements of the 
angular distribution of shower particles in the L-system support this con
clusion.

Since the transverse momentum distribution shows that most particles 
arc relativistic in the C-system, one may use, xvhen transforming to the 
L-system, the approximation

ßclß*  * 1.

With this approximation a fireball which emits particles with an angular 
distribution proportional to cos 0n produces an angular distribution in the 
L-system

N (x) dx = |d(tanh”+1 (æ + logyc)), (A. 1 )

where yc is the C-system energy of the incident nucleon in rest mass units 
and x = log tan 0.

This distribution, when plotted against x, has two maxima :

-log{7c[yF±|/yF2-l]}, (A.2)

where yF = I 1 + —. In the case of complete isotropy, (/; = 0), the maxima 

coalesce into a single maximum at xm = - log yc, and one obtains a quasi- 
gaussian distribution with a root mean square deviation a = 0.39. Normally, 
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however, fireballs must be expected to have intrinsic angular momentum, 
so that a certain measure of anisotropy in the evaporation and therefore 
double maxima in the log tan 0 distribution should be common; they should 
become somewhat more pronounced with increasing energy. In many showers 
only a single hump can be seen, but when two maxima can be resolved, 
separations xm are typically in the range ^<xm<2, corresponding to C- 
system angular distributions between cos O0,125 and cos 02,5. The observed
I,-system angular distribution can therefore be interpreted as due to moder
ately anisotropic emission from a spinning fireball at rest; alternatively, 
(as one can see from eq. A.2) it can also be interpreted as being due to 
emission from two spinless fireballs moving parallel to the colliding nucleons 

with velocities in the C-system ßF = 1/ 9 an<^ a symmetr^c distribution

for each hypothetical emission centre

forward - backward 
forward + backward

n + 1

V '“25-30°/»-
'fhe latter interpretation has been stressed especially by the Krakow group(21).

An upper limit for (7JF)max 800 MeV/c is dictated by the observed 
absence or rarity of transverse momenta higher than this value(16).

Thus the assumptions 1), 2), and 3), i.e. creation of a fireball at rest 
emitting relativistic particles fairly isotropically, are in accord with experi
ments.

It is possible that fireballs have discrete mass values of’ the order of 2 GeV, 
as suggested by Hasegawa(22), which may account for their absence or 
rarity in p—p collisions al accelerator energies and for the large fluctuations 
observed in the angular distributions in the energy range of 100-300 GeV(5a).

A.2 Relation between Multiplicity and Energy.

Only few measurements of multiplicity exist where the energy of the 
incident nucleon is high and measurable and where at the same time inter
actions have been collected without strong bias against low multiplicity 
events. Below 30 GeV one has quite accurate results based on accelerator 
data. Al 70,100, 300, and 1000 GeV one has cloud chamber data(5a>d>0. 
The measured mean multiplicities may be slightly too high, because of some 
residual bias against very low multiplicities^).
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Fig. 9. The total number of created particles (charged and neutral), which on the average are 
emitted in a collision between a nucleon and a target nucleus of low atomic weight, is plotted 

as a function of the energy of the incident nucleon. The curve represents relation A.4.

Al 250 GeV and at 2700 GeV, fairly reliable though statistically poor 
measurements of the multiplicity of charged particles were obtained by 
Löhrmann et aid23) and by Abraham el aid24) These authors used heavy 
primary nuclei whose energy per nucleon can be determined by various 
well-known methods; they then searched for interactions by scanning along 
the tracks of singly charged break-up products, i.e. fragments of the incident 
nucleus. One source of error could be the presence of deuterons or tritons 
among the break-up products, and another, a possible inclusion of inter
actions with heavy nuclei, silver or bromine, even when only events with less 
than five heavy ionizing particles are accepted. Both types of error may lead 
to some overestimate of multiplicity.

In Fig. 9 the total number of created particles, nt, at various energies is 
shown; nt has been calculated from the measured number of charged 
particles, nc, using the relation

0.8||j + 0.2(2) •(nc-1) = 1.6(nc- 1). (A.3)
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The first term in eq. (A.3) refers to pions and the second to particles of 
isospin The relation (A.3) is energy independent, because the ratio of 
non-pions to pions among created particles is known to be independent of 
energy. <25>

The model requires a multiplicity relation of the form nt = 2 snB + n0E°, 
where s is the probability of baryon excitation, nB the average number of 
mesons emitted in their decay, and n0Es represents the creation of mesons 
in the pionization process.

The available data are neither numerous nor accurate enough to deter
mine the form for the multiplicity law uniquely. A lead is provided by the 
approximate invariance of the nucleon energy spectrum with atmospheric 
depth, which suggests that the average energy loss of nucleons in collisions 
with nitrogen is energy independent. In this simplest case, the multiplicity 
relation must be of the form

nt = 2 snB +n0 E112. (A.4)

The curve in Fig. 9 represents eq. (A.4). A fit with experiment requires the 
following values for the parameters :

2snB = 4.75 ±0.25
n0= 1/4

E1/2
i.e. nt = 4.75 + —— (E is in GeV).

This relation between energy and number of created particles is consistent 
with existing measurements. (Although it cannot be deduced from the data 
in a unique manner, the data also do not warrant as yet the assumption 
of a more complicated relationship).

The multiplicity relation for high energy pions is still less certain than 
that for nucleons.

In the text (eq. IV.la), the relation

= snB + r0Ej/e2v, (IV. 1 a)

which corresponds to a high degree of inelasticity, has been used as yield
ing sufficient multiplication of pions in the lower atmosphere to reproduce 
the measured pion/proton ratio near sea level<14>. Agreement can be ob
tained for r0 = 0.7.

Using again snB 2.4, the formula gives a reasonable multiplicity of 
created particles for n — p collisions from 8 to 800 GeV, the energy region

Mat.Fys.Medd.Dan.Vid.Selsk. 33, no. 15. 4 
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in which measurements are available. Apart from the term due to baryon 
isobars, the two multiplicity laws nt(E) for nucleons (A.4) and 17(E) for 
pions (IV. 1) are then related by

i. e. the pionization in nucleon-nucleon collisions behaves as it it were due 
to completely inelastic collisions between two target masses, not very dif
ferent from those of free pions; in that case,

(A.5)

and the fractional energy going to pionization in nucleon-nucleon collisions is 

values which are rather similar to those arrived at in Section IV.

If such collisions lead to boson quanta of rest mass Mp æ 2 Mp, as suggested 
by Hasegawa!22), the creation of particles by pionization in nucleon-nucleon col
lisions will become important only if yc Mp or E > 100 GeV ; this may be 
connected with the smallness of the isotropic low energy pion component in the 
G-system of nucleon-nucleon collisions at accelerator energies!3).

A.3 Relative Contributions to the Secondary Cosmic Ray Flux of Mesons from 
Isobar Decay and Mesons from Pionization.

The two different processes by which particles are created in this model 
have now been specified sufficiently well so that their relative contribution 
to pion production in the atmosphere can be evaluated reliably and in a 
straightforward manner.

If the nucleon energy spectrum is of the form dE/Ev+1, the spectrum 
of pions produced in the pionization process will be given by

2Mp) 2ßF(y+i-e) (E2y+i~e

n„dE _ /2^-e

9F (-^) — no
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ep is the energy of the mesons in the rest system of the fireball and ßF is their 
velocity.

This formula applies to isotropic emission. In the case of extreme anisotropy, 
where half the particles are emitted at 0° and half at 180°, gF must be multiplied 
by (y + y — (?)  1-67. An anisotropic emission of particles from the fireball does 
not, therefore, invalidate the conclusions derived in this section.

The spectrum of pions produced in isobar decay is given by

dE = sn R ----- -------------- —---------- -------- —
B\MbI 2ft,(y+l) ET+1

snBdE

where eB is the energy of decay pions in the rest system of the baryon isobar of 
mass Mb and ßB is their velocity.

For the lowest lying isobar, (the T = 3/2, J = 3/2 state), 
eb 270 MeV and it is probably higher for heavier isobars. 
eF * 470 MeV, as shown in experiments (5) discussed earlier.
77' may be taken to be approximately constant and equal to 0.8 (see 
Section IV).

Assuming an exponent y — 1.67 for the primary energy spectrum, the
9 brelative contribution of the two processes, —, as a function of pion energy 
9f

has been plotted in Fig. 1 for various assumed values of the product snB 
(snB is the average number of pions per collision from the deexcitation of 
the forward isobar). The constants n0 and q which characterize the size 
of the fireball have been chosen such that the total multiplicity of created 
particles nt agrees with the experimental data for targets of low atomic 
number and for incident nucleon energies of 30 GeV (nf = 6) and of 
2700 GeV (nt ** 18). The appropriate multiplicity relation is shown on each 
of the curves in Fig. 1.

From these curves one sees that isobar pions dominate in the atmosphere 
at all energies if one accepts the value snB^2; they dominate above 
10 GeV for values of snB as small as 0.5. The dominance of the isobar decay 
process as a contributor to the flux of secondary cosmic ray particles in
creases rather rapidly with energy; of course this holds not only for mesons 
but also for their decay products, i.e. for muons, y-rays, neutrinos etc. Thus, 

4*

(A.7)
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unless baryon excitation is much less frequent in high energy collisions than 
it is at laboratory energies, the secondary cosmic radiation consists essentially 
of the decay products of baryon isobars and their progeny.

Appendix B

Formulae for the General Case of an Arbitrary Set of Isobaric 
States and for Arbitrary Decay Schemes

The simple model on which this paper is based permits a fairly rigorous 
calculation of nucleon and meson intensities and spectra at all points in 
the atmosphere.

We derive here formulae for the nucleon flux, the pion production 
spectrum, and the charge composition of nucleons and of pions, for the 
general case of an arbitrary set of baryon isobars, each with its own excitation 
probability and with arbitrary decay chains. Although the formulae in
volve summations over running indices, they can be evaluated easily for 
specific cases.

B.l The Nucleon Flux.

Let the isobar of type r be produced with an interaction length and 
let it carry a fraction rfr of the energy of the incident nucleon. The physical 
isobaric states are numbered 0,1,2,3 . . . r . . . in ascending order of mass, 
so that 0 denotes the nucleon ground state. Direct transition between any 
two of these states is assumed to lead to emission of a single boson which 
we shall take to be a pion, but which may equally well be a boson isobar, 
which subsequently disintegrates into pions.

A collision of type i is defined by specifying the isobar which is produced as 
well as the specific chain, a, by which it decays into a nucleon and a number 
of pions. Taking account of the Poisson fluctuations in the number of colli
sions of each type, a simple extension of the argument given in chapter II 
(eq. 11.4) shows that the attenuation length of nucleons in the atmosphere 
is given by the relation

^4(1-0/», (B.l)

where

<hY> = 5
i = i A

(B.2)
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1 * 1
Â «-o I,' (B.3)

and is the fraction of the incident energy retained by the nucleon in the 
Z’th type of collision.

The problem is to express in terms of the mass and decay modes 
of the isobars. The averaging process may be broken up into three inde
pendent parts.

a)
For a particular isobar r and for decay to the ground state via a definite 

set of intermediate states cr = (oy, a2, <r3, . . .) one can average over the 
angular distributions of decay and obtains

< <r = Vr' ^-r, a, • • • ^on, 0 (B-4)

2^rø(y+l)
(B.5)

and m is the fractional energy in the rest system of isobar “Z” which 
is carried away by isobar “m”, and ß'lm is its velocity.*

/0
The average over different decay modes involving different intermediate 
states a is obtained by summing all possible expressions of the type

(bA)^^.^^,,«. ■ ■ ■ (bA)^0 - Yr,a, (B.6)

where bt m is the branching ratio for transition from the state “Z” to the 
state “m”. The various terms in Yr a are subject to the restriction < Gj-x- 

The result of summing over all possible decay chains cr is designated by

yr-Zyr,<7- (B7>
a

One obtains
= (B-8)

* The expression for m is given here for isotropic decay; it is easily calculated for spe
cified non-isotropic emission of decay products.
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y)
As the final step one must average over contributions from different iso

bars which have to be weighted according to excitation probability, e.g. 
with a weight factor which is inversely proportional to the mean free path 
for exciting the particular baryon state

<>/>- X * >ii= Z («•«)

r = 0 r = 0 *- r

B.2 The Nucleon Charge Ratio.

In Section III it is shown that the charge composition of nucleons at a 
depth x can be written as

=(5 <5 e-(x/Â)<2^lp>> (III.2)
Mn/*  x 0

The average < iv) may now be written as

<îfM= X (B.10)
r = 0 '-r a

where wr o is the probability of producing a neutron from the decay of an 
isobar r, if the isobar is produced by an incident proton and decays through 
a particular decay chain a. An explicit expression for ivr a in terms of 
branching ratios is given later (in eq. B.19).

The proton and neutron spectra in the atmosphere are given by eq. (I II.5).

B.3 The Production Spectrum of Pions due to Isobar Decay.

If £ is the fractional energy in the isobar rest system, carried away by 
a pion, and n± is the number of positive or negative pions emitted in the 
decay of an isobar produced in a collision of a proton with an air nuc
leus, then the production spectrum of charge pions at a depth x is given by

Pn± (æ’ £) (^x = [<(n+ + n~) (.v'£Vy ± <5x<(n+ - n~)(r]'. (B.l 1)A 2

The problem is to find an explicit expression for <n±(7y,£)^> in terms of 
isobar masses and their excitation probabilities and decay branching ratios.

Starting with any isobar r, a pion may be obtained from any transition
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Iin, (m<r). The state I itself, however, is in general the result of a 
series of decay combinations of states intermediate between r and I. Thus, 
in order to evaluate </z * (7/), one must first sum over all possible decay 
schemes which can lead from the isobar r to the isobar /.

a)
[n± (?l'£)y]r,i,m = V'r7 (.bA)r, a,

x(^)CTi . . (ZM)
(B.12)

is defined in analogy to i.e.

(B.13)

where m is the fractional energy in the rest system of isobar I, carried away 
by a pion in the transition to the baryon state m, and is its velocity. 
The b’s are the various branching ratios; V(±^’cr is a function of the isospins 
of the initial and intermediate isobaric states and has the following significance: 
If a proton is incident on a target consisting of an equal number of protons 
and neutrons and emerges in the excited baryon state r, and if then this state 
r decays by a particular chain a to the intermediate state I, then V(±)r’a ex
presses the probability that the pion from the transition /->mis positively or 
negatively charged.

So far we have averaged over the angles of decay and combinations of 
intermediate states, which can lead from isobar r to isobar Z.

ß) Next, one must sum over all possible states / and zzz.

<n±(7?'eX>r = 2T 2? <n±(7?'e)y>r,z,Wi-
1 = 1m = 0

(B.14)

y) Lastly, one averages over contributions from different isobars, r, weighted 
according to the relative excitation probabilities A/Ar and obtains

or explicitly

<n±(^,£)>/>= JT ^<n±(?2/e)^>r 

r= O^r

<n±(^'e7>= Y J?

y Vf±>,r’~(bAyai(bA)<,.a, . . . (bA)
a

(B.15)



48 Nr. 15

We define
z x <n+(r/'£)y>-<n (?y'e)?> 

n <n+ (?]' e)^> + <n_ (t]' e)^> (B.16)

and
<B> = < 7i+(7/e)7 > + <"“(>/£')?>- (B.17)

(As shown in Section II, all secondary components of the cosmic radiation 
in the atmosphere are proportional to the parameter <B>).

The charge composition of pions produced by the nucleon component 
at atmospheric depth x can be written as

(III.5)

where ôx gives the nucleon charge composition at that level (eq. III.2). 
The total number of pions of either charge in the complete deexcitation 

of isobar r (produced in proton collisions) is given by

For a neutron collision with a charge symmetric target the isospin functions 
transform as

y(+U y(-)(
y(-)

The quantity wr o appearing in eq. (B.10), i. e. the charge exchange 
probability for a nucleon excited to the state r and decaying via a particular 
mode o, can now be expressed by

"'r.ff-'/r+Z 2’ +
l — l m = 0

(B.19)

where qr is the average charge difference between the incident proton and 
the resulting isobar r.

The expression for (eqs. B.15, 17) can be greatly simplified in the 
special case that the isobar decays by cascade in small steps of comparable 
size such that 2 < (Mt - Mm = d) « MB.
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Then

while

and (B.20)

eZ, m

xl, m

> (B.21)

d
, and, therefore,

y + 1

Equations (B.15, 17) reduce then to

[2 (^'er)]y 
(7 + 1)

(n+ + nr), (B.22)

where er is the fractional energy in the isobar rest system carried away by 
a pion.

Appendix C

Kaon Production from Non-Strange Isobars and the Resulting Muon Flux

The kaon flux due to non-strange isobars can be calculated in a manner 
similar to the pion flux. (As explained in the text, the most prominent decay 
mode will be + Y and therefore the flux of anti-kaons produced in
this manner is expected to be small and will be neglected).

Since kaons do not multiply in subsequent interactions, it is only ne
cessary to set q+ + q_ = 0 in eq. (II. 11) and replace the values for mass, life
time, and interaction mean free path of pions by those of charged (i. e. 
positive) kaons. Apart from the factor denoting the branching ratio for this 
decay mode, one obtains the flux of charged kaons

where u,k

(C.l)

V’t+ (C.2)
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(Bky is defined in analogy with (eqs. B. 15, 17)

(i + fa)y + i-(i-fa)y + i
2^(y + l)

(C.3)

where ek =
MBt-MY* + mkz

2MB*
is

carried away by the kaon, and

the fractional energy in the rest frame of the isobar, 

ßk is its velocity.

For Åk

Ø'CE + e^) / (C.3 a)

In analogy with the procedure in Section II.4 one obtains the production
spectrum of muons

(C.4)

where 0.69 represents the fraction of muons which arise directly from kaon 
decay without an intermediate pion, i. e. mostly /c„2 decays.

1

2 /g(o-+ 1)
(1 +ß)CT+1-(l -ß)CT+1

i

~(u+ir= 1.7

(the “best fitting” exponent o is defined by

-(<7+1)
d loS Fk 
d log E
3.2 (for E & 500 GeV).

(G.5)

In anaolgy with (11.17) the resulting muon flux is

£) = °-69 (C.6)

where E' = E+6(.r-.r) as defined in (11.17).
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Appendix D

Corrections at the Low Energy End of the Nucleon Spectrum

In its simplest form the model treated here assumes that the fractional 
energy loss of nucleons (which is about 45 °/0) does not depend on the collision 
energy; therefore the primary power law is preserved throughout the at
mosphere. This assumption can be valid only as long as the energy lies suf
ficiently high above the threshold for producing the most prominent iso
baric states (i. e. > 10 GeV). Below that energy, meson production drops 
and collisions tend to become more elastic. In this region the fractional 
loss of total energy becomes small, but the fractional loss of kinetic energy 
is known to remain of the order of 50 °/0. Thus, if the spectrum of secondary 
nucleons is written in the form 

N dE
dE

(E-Aiy+1
rather than

dE
E? + 1’

it will represent the nucleon flux down to lower values of the energy without 
appreciably changing the results obtained in the region of higher energies 
(eq. II.2). For this reason, the uncorrected nucleon spectrum is represented 
in Fig. 2 a as a power law in kinetic, rather than total energy.

Before extrapolating the proton spectrum (eq. III.3) into the low energy 
region, there are two other corrections to be made :

a) Energy loss by ionization and
b) The production of recoil nucleons.

a) The loss of energy due to ionization.
The probability p(y, x), that the average incident primary cosmic ray 

nucleon (charge composition d0) is a proton at depth y and also at the point 
of observation x, is given by

j (  2 xw _2yw  2 (x-y) w j

p(y> æ) = -p + <V 2 + <V Â +e Å p (D1)

where W is the charge exchange probability for nucleon collisions in air. 
Assuming a constant rate of energy loss b GeV/(g/cm2) for the fraction of 
the path in which the nucleon is charged, one obtains the mean energy 
loss AE for a proton arriving at x:
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2 xw
b
2

x +
1 i <50 2 1 -e Â

2 w
1

2 xw 
+ <V 2 .

2
w

2
for 2 x » — .

w

Using b = 2 MeV/(g/cm2) and the constants given in the text (2 = 75 g/cm2, 
<50 = 0.74, w = 0.30), one finds that the average proton has lost

1.25 GeV when reaching sea level and
0.95 GeV when reaching mountain altitude (700 g/cm2).

The corrected flux of protons in the atmosphere is therefore given by

2(£-jW + z1B)’' + 1
(D.3)

This relation is plotted in Fig. 2.

b) Contributions from recoil nucleons.
In order to compare the flux of low energy protons near sea level with 

the calculated flux, one must add to the flux of extraterrestrial protons given 
by eq. (D.3) a contribution from recoils, i. e. nucleons of terrestrial origin 
which originally formed part of air molecules. These recoils receive kinetic 
energies upto ~ 3 GeV when the collision energy is low (^,10 GeV); in 
more energetic collisions, the energy which a recoiling baryon receives ap
proaches a small constant value, and the resulting recoil nucleon has a 
maximum energy

E max (D.4)

Here, P± is the transverse momentum taken up by the baryon in the excitation 
process, and 1 — rf is the fractional collision energy used up in the creation of par
ticles via the pionization process. The first bracket represents the energy in rest 
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mass units of the baryon in the L-system, and the second bracket represents the 
energy of the nucleon in the baryon rest system, on the assumption that it decays 
into nB pions of equal energy. ßB and ßP are the corresponding velocities of the 
baryon and the nucleon.

Setting P «a 500 MeV/c and using the values derived in the text (?/ = 
0.75, Mb = 2200 MeV and nB = 3.5), one finds a recoil kinetic energy

7max ~ 3-° GeVi

if no excitation takes place (MB = MP, n = 0, ßP = 0)

7max ~ 250 MeV-

Thus it is to he expected that, when reaching sea level, recoil nucleons 
will make a contribution to the proton flux mainly in the non-relativistic 
region. Fig. 2 shows that, in the energy region 0-500 MeV, there is in fact 
an excess of observed protons over and above the flux of extra-terrestrial 
protons calculated according to eq. (D.3). The excess is of the correct order 
of magnitude to be attributed to particles of terrestrial origin.
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